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Abstract. Curupira is a 96-bit block cipher, with keys of 96, 144 or 192 bits, and
variable number of rounds, an algorithm described at SBRC 2007. This paper1

presents impossible-differential, boomerang and higher-order multiset attacks
on reduced-round versions of Curupira, that were not previously considered in
the security analysis by its designers. Also, we provide security analyses based
solely on the block size and on the key size of the cipher, such as plaintext leakage
and related-key attacks. Our analyses indicate new attacks on up to 6-round
Curupira.

1. Introduction

Curupira is a block cipher designed by Barreto and Simplı́cio and presented at SBRC
2007 [Barreto and Simplı́cio Jr 2007]. This cipher has a Substitution Permutation Net-
work (SPN) structure, like the AES [AES 1997] and is based on the wide-trail design
strategy [Daemen 1995]. In [Barreto and Simplı́cio Jr 2007], the designers of Curupira
argued about its security under several attack settings. The best reported attack was the
square or saturation attack [Daemen et al. 1997] on up to seven rounds of Curupira, with
a complexity smaller than that of an exhaustive key search. In this paper, we describe
impossible-differential (ID), boomerang and higher-order multiset attacks on reduced-
round versions of Curupira. The motivation for the ID and boomerang attacks are the
fact that these techniques exploit the cipher from both the encryption and decryption di-
rections, namely, the corresponding distinguishers are based on differentials constructed
from both ends of a given cipher. The end results are new attacks on 6-round Curupira.

This paper is organized as follows: Sect. 2. briefly describes the Curupira cipher;
Sect. 3. describes higher-order multiset attacks on Curupira; Sect. 4. describes impossible-
differential attacks; Sect. 5. describes boomerang attacks. Sect. 6. discusses plaintext
leakage properties of Curupira; Sect. 7. related-key aspects of the cipher; Sect. 8. dis-
cusses related-cipher attacks; Sect. 9. concludes the paper.

2. The Curupira Block Cipher

Curupira is an iterated block cipher proposed in [Barreto and Simplı́cio Jr 2007], by Bar-
reto and Simplı́cio, for confidentiality purposes in constrained environments, such as sen-
sor networks. Curupira operates on96-bit text blocks (plaintext and ciphertext), with keys
of 96, 144 and192 bits. The number of rounds is variable. For96-bit keys, the number of
rounds ranges from10 (minimum) to11 (maximum). For144-bit keys, the cipher iterates
from 14 up to17 rounds. For192-bit keys, the cipher iterates18 up to23 rounds.

Plaintext, ciphertext and subkeys are organized in a3×N matrix of bytes, called
state matrix, whereN is the number of24-bit words. For example, the state matrix for
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the3 ∗N -byte dataA = (a0, a1, . . . , a3N−1) is pictorially represented as

State=





a0 a3 . . . a3N−3

a1 a4 . . . a3N−2

a2 a5 . . . a3N−1



 , (1)

namely, with bytes inserted columnwise, in top-down order. All internal operations of
Curupira are bytewise, with bytes represented as elements over GF(28) = GF(2)[x]/p(x),
wherep(x) = x8 +x6 +x3 +x2 +1 is a primitive polynomial of degree eight over GF(2).

Curupira follows the wide-trail design strategy [Daemen 1995] used in the AES
[AES 1997].

One full round of Curupira consists of four transformations overMn, the set of
3× n matrices over GF(28):

• σk: the bitwise exclusive-or of thek-th round subkey matrix with the intermediate
cipher state;
• γ: the parallel application of a fixed,8 × 8-bit S-box to each byte of the

state. This S-box is the same one defined for the Khazad block cipher
[Barreto and Rijmen 2000];
• π: a byte permutation represented by row rotations of the state matrix; leta, b ∈

Mn, thenπ(a) = b↔ bi,j = ai,i⊕j, where0 ≤ i < 3 and0 ≤ j < n;
• θ: it is a diffusion layer consisting of a linear transformation based on the [6,3,4]

MDS code with generator matrixGd = [ID], where

D =





3 2 2
4 5 4
6 6 7



 . (2)

This transformation hasbranch number four, following [NIST 2001].

Notice that each round transformation corresponds, roughly, to a quarter of a round (a
fraction of 0.25). This feature will be used to measure the size of distinguishers in the
attacks described further.

One full round of Curupira can be denotedηk(x) = θ ◦ π ◦ γ ◦ σk(x) =
θ(π(γ(σk(x)))), x ∈Mn. We assume the subkey numbering starts fromk0.

Notice thatσk is the only key-dependent round transformation. Moreover, all four
round transformations are involutions, that isσk ◦ σk(x) = x; π ◦ π(x) = x; θ ◦ θ(x) = x
for all x ∈Mn; andγ ◦ γ(y) = y for all y ∈ GF(28).

Some of these round transformations commute, such asπ ◦ γ = γ ◦ π, since both
of them operate bytewise, one permuting bytes, while the other performing a non-linear
byte transformation. Also,π ◦ σk = σk ◦ π, andσk ◦ θ = θ ◦ σk′ , wherek′ = θ(k). Other
pairs of round transformations do not commute in general. For instance,θ ◦ π 6= π ◦ θ,
γ ◦ σk 6= σk ◦ γ, andθ ◦ γ 6= γ ◦ θ.

The attacks in this report do not depend on the particular secret key used, and thus,
are independent on the key schedule algorithm.

The key schedule of Curupira allowon-the-fly round subkey generation for both
encryption or decryption. Moreover, subkey generation is notone way, that is, from any
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(recovered) round subkey, one can reconstruct any following orprevious subkeys, and
even the original user key. This means that the entropy of each round subkey cannot be
larger than96 bits (the block size). Further details about the key schedule of Curupira can
be found in [Barreto and Simplı́cio Jr 2007].

3. Multiset Analyses

The technique used in a multiset attack [Biryukov and Shamir 2001] has similarities with
the Square attack [Daemen et al. 1997], saturation attack [Lucks 2001] and integral crypt-
analysis [Hu et al. 1999, Knudsen and Wagner 2002]. All of these techniques operate in
a chosen-plaintext (CP) setting, and the first published one was a dedicated attack on the
Square block cipher [Daemen et al. 1997]. A fundamental concept in a multiset attack
is theΛ-set [Daemen et al. 1997], which is amultiset[Biryukov and Shamir 2001] (a set
with multiplicities) containingb full n-bit text blocks, wheren is the block size andb
is typically a power of2. Thesen-bit text blocks are analysed by tracing fixed (but not
necessarily contiguous)w bits,w < n, over all the text blocks. For example,

{(0|1|2|3), (1|2|2|1), (3|1|2|2), (2|2|2|1), (7|5|2|0), (4|5|2|7), (5|5|2|4), (6|5|2|4)} (3)

is aΛ-set withb = 2w = 8 text blocks, each of which is12 bits wide (n= 12). We further
consider each of these2w text blocks as a concatenation of fourw-bit words (w= 3), and
thus, keep track of particularpatternsin thesew-bit words for the2w text blocks. These
w bits are often composed ofcontiguousbits that respect word boundaries, hence the use
of the termword. The patterns of interest are the following:

• if the w-bit word in aΛ-set assumes each of the values0 to 2w−1, then the word is
called apermutationor anactiveword [Daemen et al. 1997], and is denoted ’A’.
This is the case of the word formed by the first 3-bit word of each element in the
multiset (3), which is{0, 1, 3, 2, 7, 4, 5, 6};
• if the w-bit word assumes an arbitrary constant value, it is calledpassive

[Daemen et al. 1997], and is denoted ’P’. This is the case of the third set of 3
bits in (3), which is{2, 2, 2, 2, 2, 2, 2, 2};
• if the w-bit word contains anevennumber of repetitions of some arbitrary values

(each element has even multiplicity), the word is calledeven, and is denoted ’E’.
This is the case of the second set of 3 bits in (3), which is{1, 2, 1, 2, 5, 5, 5, 5};
• if the sum of allw-bit values in a givenΛ-set under some operator⊡, results in

a predictableamount, then this word is calledbalanced, and is denoted ’B’; in
Curupira, we use⊡ = ⊕;
• otherwise, if the⊡-sum results in an unpredictable value, the word is calledun-

balanced, and is denoted ’?’. This is the case of the fourth set of 3 bits in (3),
which is{3, 1, 2, 1, 0, 7, 4, 4}, with ⊡ = ⊕ i.e. exclusive-or.

The rationale behind the multiset technique is to use balanced multisets ofw-bit
words to attack permutation mappings. Thus, multiset attacks exploit the bijective nature
of internal cipher components. In particular, ciphers that operate on neatly partitioned
words are the main targets. A typical multiset attack starts with multisets in which all
words are balanced (usually only ’A’ and ’P’) and the propagation of balanced words in
the multisets across multiple rounds of a cipher is traced up to the point in which the
multiset is composed only of unbalanced bits.
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In [Barreto and Simplı́cio Jr 2007], multiset attacks were presented based proba-
bly on a (1st-order) multiset distinguisher such as (4). To simplify the notation, we adopt
σ instead ofσk, since the behaviour of the distinguisher does not depend on the partic-
ular subkey values. Distinguisher (4) reaches3.25 rounds, and could be used to simply
distinguish3.25-round Curupira from a random permutation. Additionally, it allows key-
recovery attacks whose complexities are listed in Table 1.





A P P P
P P P P
P P P P





θ◦π◦γ◦σ
→





A P P P
A P P P
A P P P





π◦γ◦σ
→





A P P P
P A P P
P P A P





θ
→





A A A P
A A A P
A A A P





π◦γ◦σ
→





A A A P
A A P A
A P A A





σ◦θ
→





B B B B
B B B B
B B B B



 (4)

The distinguisher (4) shows that the encryption framework of Curupira takes at
least three rounds to achieve complete diffusion (compared to two rounds for the AES
[AES 1997]). This slower diffusion impacts the extent to which key-recovery attacks can
be performed on the cipher.

3.1. Higher-Order Multiset Distinguisher

Using larger words, instead of bytes, we arrive at higher-order multiset distinguishers,
such as (5), where ’A∗’ stand for a 24-bit active word. Similarly, ’E∗’ denote 24-bit even
words, namely, all 24-bit values appear an even number of times.





A∗ P P P
P A∗ P P
P P A∗ P





θ◦π◦γ◦σ
→





A∗ P P P
A∗ P P P
A∗ P P P





π◦γ◦σ
→





E∗ P P P
P E∗ P P
P P E∗ P





θ
→





E∗
1 E∗

2 E∗
3 P

E∗
1 E∗

2 E∗
3 P

E∗
1 E∗

2 E∗
3 P





π◦γ◦σ
→





E∗
1 E∗

2 E∗
3 P

E∗
2 E∗

1 P E∗
3

E∗
3 P E∗

1 E∗
2





θ
→





A∗ E∗ E∗ E∗

A∗ E∗ E∗ E∗

A∗ E∗ E∗ E∗





π◦γ◦σ
→





A∗ E∗ E∗ E∗

E∗ A∗ E∗ E∗

E∗ E∗ A∗ E∗





σ◦θ
→





B∗ B∗ B∗ B∗

B∗ B∗ B∗ B∗

B∗ B∗ B∗ B∗



 (5)

The distinguisher (5) reaches 4.25 rounds, and it has been confirmed experimentally, for
randomly selected user keys.

An attack on 5-round Curupira, using (5) proceeds as follows:

• create a pool of224 plaintexts{Pi} in which byte positions0, 4 and8 of the state
contain all 24-bit values exactly once, while the remaining bytes contain fixed,
random values. This construction represents the ’A∗’ word in (5);
• encrypt the pool{Pi} across 5-round Curupira, obtaining the corresponding pool
{Ci}, 0 ≤ i < 224;
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• the last round after the distinguisher consists of the transformationσk5 ◦ π ◦ γ ◦
σk4 . It does not containθ, but even ifθ was present, it could be undone, since
θ ◦ σ = σ′ ◦ θ (Sect. 2.). Likewise, the lastπ layer can be undone, since it is key
independent. Thus, the last round can be simplified, resulting inσ′

k5
◦ γ ◦ σk4 ,

whereσ′
k5

consists of a permuted version ofσk5 ;
• guessσ′

k5
bytewise, applyγ−1 = γ, and check the exclusive-or over all224 cipher-

texts in a pool. If the result is a balanced byte (the xor is zero), then the guessedσ′
k5

byte is a candidate for the correct value. The expected number of false positives
is 28/224 < 1.

The attack complexity is224 · 28 = 232 1-round partial decryptions per subkey
byte guessed. For all twelve subkey bytes ofσ′

k5
it means12 · 232/5 ≈ 233 5-round

computations. The data complexity is224 CP. The memory complexity is224 text blocks.

An attack on 6-round Curupira, using (5), recover subkeys from two rounds be-
yond the distinguisher:

• consider the last two rounds after the distinguisher,σk6 ◦ π ◦ γ ◦ σk5 ◦ θ ◦ π ◦ γ.
The lastπ layer can be undone. Moreover,σk5 can move acrossθ andπ, resulting
in σ′

k6
◦ γ ◦ θ ◦ π ◦ σ′

k5
◦ γ;

• guess three bytes ofσ′
k6

and one byte ofσ′
k5

in order to partially decryptσ′
k6
◦ γ ◦

θ ◦ π ◦ σ′
k5
◦ γ until arriving at one byte at the bottom end of (5);

• check if this byte is balanced (an 8-bit condition), then the guessed 32-bit subkey
is a candidate to the correct value.

For each 32-bit subkey value, this procedure costs224 · 232 = 256 2-round partial
decryptions, or about256 · 4 S-box computations. Since there are12 S-boxes per round,
it results in256 · 4/(12 · 6) ≈ 252 6-round computations. There is a2−8 chance of false
positives for232 subkey values. After five pools, the number of false positives becomes
(2−8)5 · 232 < 1. The data complexity is5 · 224 CP. The time complexity is5 · 252 ≈ 254

6-round computations. The memory complexity is224 text blocks.

4. Impossible-Differential Attack

Unlike the differential [Biham and Shamir 1991] and linear [Matsui 1994] techniques,
which look for events such as text patterns or statistical correlations of high probabil-
ity (or high bias), the Impossible Differential (ID) method looks for events that never
happen. The ID technique is a chosen-plaintext (CP) attack formerly proposed by Knud-
sen in [Knudsen 1998b] against the DEAL block cipher, and further applied to Skip-
jack [Biham et al. 1998], IDEA [Biham et al. 1999], Khufu [Biham et al. 1999], AES
[Biham and Keller 2000] and many other ciphers. ID distinguishers currently reported
in the literature use the miss-in-the-middle technique [Biham et al. 1998] that requires
two differentials (denoted∇ and∆) both holding with certainty (probability one). In∇,
the difference patterns propagate in the encryption direction. In∆, the difference patterns
propagate in the decryption direction. Both differentials are constructed such that the out-
put difference pattern of∇ is incompatible with the input difference pattern of∆, in the
sense that∇ cannot cause∆ (and vice-versa). This contradiction explains the termmiss-
in-the-middle, and this incompatibility between the two differentials is denoted∇ 6→ ∆.
Symmetrically,∆ 6→ ∇ (the latter works in a chosen-ciphertext (CC) setting).
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In byte-oriented ciphers such as Curupira, it is typical to use truncateddifferentials
[Knudsen and Berson 1996] to construct∆ and∇, because truncated difference patterns
hold with certainty. Moreover, they are also independent of the particular S-boxes used
in the cipher. In truncated differentials, one only distinguishes between zero and nonzero
differences, namely, the exact value of the nonzero difference is irrelevant. For bytewise
difference patterns, as in the AES, a nonzero byte difference will be denoted ’δ’. In
contrast, a zero byte difference will be denoted simply ’0’. Notice that although ’δ’ is
used throughout the distinguisher, it does not mean that all these bytes contain the same
difference value. It only means that the difference value in nonzero. The difference
operator used for Curupira is exclusive-or.

Differential [Biham and Shamir 1991] and linear [Matsui 1994] distinguishers
(among others) recognize the correct key by comparing difference patterns or linear re-
lations that most often satisfy the distinguishers. ID distinguishers operate the other way
around. The keys that actually satisfy the ID distinguisher are wrong values, and the
(single) key value not suggested by the distinguisher is the correct one.

For Curupira we have found a 5-round ID distinguisher, depicted in (6). The
symbol ’?’ denotes either a zero or nonzero byte difference (its exact status is unknown).
Arrows indicate the direction of propagation of differences. Recall that all four round
transformations are involutions (thus, for instance,θ−1 = θ). To avoid clutter, we simplify
σk asσ.

Notice that before the thirdθ layer in (6), the rightmost column of the state con-
tains differences (δ, δ,?). But after thisθ layer, the state contains the differences (0, 0, 0).
This situation contradicts the fact thatθ has branch number four, because the sum of
nonzero byte differences before and after thisθ layer is at most three. Whether the value
of ’?’ is zero or nonzero, the branch number is smaller than four. Thus, (6) holds with
probability zero.

Notice that the output difference of (6) is satisfied with probability(2−8)9 = 2−72

by a random permutation.





δ δ 0 0
0 0 0 0
0 0 0 0





θ◦π◦γ◦σ
→





δ δ 0 0
δ δ 0 0
δ δ 0 0





π◦γ◦σ
→





δ δ 0 0
δ δ 0 0
0 0 δ δ





θ
→





? ? δ δ
? ? δ δ
? ? δ δ





π◦γ◦σ
→





? ? δ δ
? ? δ δ
δ δ ? ?





θ

6→





? 0 0 0
0 ? 0 0
0 0 ? 0





π◦γ◦σ
←





? 0 0 0
? 0 0 0
? 0 0 0





θ
←





δ 0 0 0
δ 0 0 0
δ 0 0 0





σ◦π◦γ◦σ
←





δ 0 0 0
0 δ 0 0
0 0 δ 0



 (6)

A key-recovery ID attack on 6-round Curupira using (6), discovers the first round
subkey (the distinguisher is placed in the last 5 rounds), and works as follows:

(i) create a poll of248 plaintexts{Pi} with all possible values in positions0, 1 and2
of the state, and fixed values in the other positions;
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(ii) encrypt this pool across 6-round Curupira, and obtain a correspondingciphertext
pool{Ci}, 0 ≤ i < 248;

(iii) form about248(248 − 1)/2 ≈ 295 pairsCi ⊕ Cj, with i 6= j, and check whether
byte positions 1, 2, 3, 5, 6, 7, 9, 10, 11 of the ciphertext state contain zero byte
difference; if so, guess 48 bits ofσk0 corresponding to positions 0, 1, 3, 4, 8, 11,
and partially decrypt the first round of(Pi, Pj), up to the leftmost two columns of
the state. If there is only a single nonzero byte difference afterθ in each of these
columns, then the guessed 48-bit subkey is wrong, because it satisfies the input
difference to the ID distinguisher (6);

(iv) output the single 48-bit subkey, not eliminated by the filtering in (iii).

Step (i) creates a pool of plaintexts that lead to nonzero byte differences only in
the two leftmost columns of the state after one round. Step (ii) creates the corresponding
ciphertext pool, from which pairs will be selected in step (iii) that satisfy the output differ-
ence of (6). Moreover, step (iii) also filters wrong subkey candidates that lead to the input
difference of (6). Such wrong subkeys must be discarded. The forbidden output difference
for Ci⊕Cj contain nonzero byte differences in byte positions(1, 2, 3, 5, 6, 7, 9, 10, 11), or
(0, 2, 4, 5, 6, 7, 8, 9, 10), or (0, 1, 3, 4, 5, 7, 8, 9, 11) or (0, 1, 2, 3, 4, 6, 8, 10, 11) (recall the
byte numbering in 1). The expected number of ciphertext pairs that satisfy the output dif-
ference pattern in (6) is295/(4 · (28)9) = 221 since there are four difference patterns with
nine zero byte differences in each. So, we expect to test about221 pairs in step (iii). Each
48-bit subkey candidate that satisfies (iii) lead to the two leftmost columns of the interme-
diate state with a singleδ in each. Thus, one expects that248/232 = 216 wrong subkeys
are suggested per pair. After four plaintext pools are processed, the expected number of
wrong subkeys remaining is248(1 − 2−16)223

≈ 248(e−1)27
= 248/e128 <<< 1, so, it is

expected that only the correct subkey value remains.

In step (ii) each right pair is partially decrypted for248 subkeys. This is equivalent
to 248 · 223 = 271 1-round decryptions, or271/6 6-round computations. This procedure
must be repeated twice to recover the fullσk0 . Thus, the effort is2 · 271/6 ≈ 269.5 6-round
computations. The data complexity is2·4·248 = 251 chosen plaintexts (CP). The memory
required is about223 blocks to store the right pairs, and248 bits (or241.5 blocks) to store
the subkeys candidates.

5. Boomerang Analysis

The boomerang technique is a chosen-plaintext adaptively chosen-ciphertext (CPACC) at-
tack, developed by Wagner [Wagner 1999]. The boomerang technique exploits encryption
schemes parameterized by a secret keyK, denotedEK , and which can be decomposed
into EK = E1 ◦ E0. Moreover, it is assumed that there is no known high probability
differential coveringEK , butE0 is a weak transformation in the encryption direction, and
E1 is weak in the decryption direction (that is the reason for the CPACC setting). In this
particular context, the termweak means that a truncated differential propagates across
bothE0 andE−1

1 with a relatively high probability. Notice that the probabilities of propa-
gation of truncated differentials depend on the direction of propagation of the differences
(encryption or decryption direction). The difference operator is bitwise exclusive-or.

A boomerang attack on5-round Curupira is depicted in Fig. 1, and works as fol-
lows:
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Figure 1. 5-round boomerang distinguisher for Curupira.
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(1) consider a pool{Pi} of 224 blocks with all possible 24-bit values in byte positions
0, 4, 8 of the plaintext state, while the remaining byte positions contain fixed,
arbitrary values;

(2) encrypt the pool{Pi} across5-round Curupira, and obtain the corresponding ci-
phertext pool{Ci}, 0 ≤ i < 224;

(3) construct a pool of ciphertexts{Di} = {Ci ⊕ ∇}, where∇ is a fixed nonzero
difference with only one nonzero byte difference (Fig. 1); decrypt the pool{Di}
to obtain a plaintext pool{Qi}. Sort{Qi} by the bytes corresponding to nine zero
byte differences. Pick only those pairsQi⊕Qj, i 6= j, which have zero difference
in these nine bytes (Fig. 1); if none found, then go back to step (1);

(4) for each quartet(Pi, Pj, Qi, Qj) that satisfy step (3) guess the 24-bit subkey value
that are xored to the three∆ byte differences atσk0 ;

(5) using the guessed 24-bit subkey, partially encrypt one round and check that the
resulting difference has a single∆ byte. This is a 16-bit condition for each
pair (Pi, Pj) and (Qi, Qj). This gives a 32-bit condition for both sides of the
boomerang in the case of common 3-tuples of active S-boxes. But, with probabil-
ity half, there will be no common 3-tuples. We will then pick subkey candidates
that are suggested most often.

The pool{Pi} provides about224(224 − 1)/2 ≈ 247 text pairs with nonzero dif-
ference in byte positions 0, 4, 8. After one round, about247/216 = 231 pairs lead to a
state with a single nonzero byte difference in the leftmost column of the state. After the
second round, there will be three nonzero byte differences in this leftmost column. After
the third round, nine nonzero byte differences will be nonzero (Fig. 1)

From the bottom-up direction, we will have one round crossed with probability
one, with a truncated differential that starts with a single nonzero byte difference, and
ends with three nonzero byte differences. At this point, we need that after the nextγ layer,
the difference in these three bytes be the same. This happens with probability2−24. Then,
we switch to the last face of the boomerang where the effect of the mixing of the third
round can be undone with certainty, and we will get three nonzero byte differences after
γ of the third round. There is a probability of3 · 2−8 for three nonzero byte differences
to turn into two nonzero byte differences afterγ andθ. From that point, the truncated
differential propagates freely with probability one. As a result we obtain a new pair
of plaintexts with nonzero difference in six bytes and zero difference in the remaining
six bytes. This is a(48 − log 3)-bit filtering condition. The− log 3 appears since the
position of the two nonzero byte differences are not fixed. From2 pools, we will have
231 ·2 ·3 ·2−8 ·2−24 = 3 good boomerangs returning. The average amount of false quartets
which satisfy our initial filtering condition is247 ·2·2−48 ·3 = 3. In the simplest case, when
the boomerang returns in the same three bytes as it was sent, we guess the 24 bits of the
first subkey and check it against the two sides(Pi, Pj) and(Qi, Qj), whether in both cases,
it leads to a single nonzero byte difference after one round. This gives a 32-bit filtering
condition which leaves only the correct key guess with probability1 − 2−8. However,
with probability1/2, it may happen that for the two boomerang pairs, active 3-tuples of
the output pair(Qi, Qj) will be different from those of the input pair(Pi, Pj). In this
case, we independently guess 24 bits of the subkey corresponding to the input 3 bytes for
each pair, and leave only those subkey values that lead to a single nonzero byte difference
after the first round. To recover the other half of the first subkey, just repeat the attack
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by chaning the nonzero byte difference in Fig. 1 appropriately. The attack complexity is
2·2·224 = 226 chosen-plaintexts adaptively-chosen ciphertexts (CPACC), and226 1-round
computations, or226/5 ≈ 223 5-round computations. The memory required is224 blocks.

An attack on 6-round Curupira works similarly to the one on 5 rounds, but we
guess subkeys at both ends of the distinguisher Fig. 1. We guess additionally, 24 bits
of the 6th-round subkey. We double the number of pools from2 to 4, to get 4–6 good
quartets for better filtration. We expect at least2 to 3 good quartets will have overlapping
3-tuples between thePi’s andQi’s, which provide2−8 filtration power. Thus, we will
get about224 · 2−8 = 216 candidates for 48-bit subkeys: 24 bits at the top and 24 bits at
the bottom. The correct subkey will be suggested at least twice, and the wrong subkeys
would likely be suggested only once. Thus, we expect that all the wrong pairs will be
filtered at the key recovery step. The attack complexity is226 CP,4 · 224 · 224 = 250 ACC
and250 1-round computations, or250/6 ≈ 247.5 6-round computations, and224 blocks of
memory.

6. Plaintext Leakage

Due to the birthday paradox [Menezes et al. 1997], after about2n/2 encryptions, either in
ECB or CBC modes, ann-bit block cipher starts to leak information about the plaintext
[Knudsen 1998a], in a ciphertext-only (CO) setting. For Curupira, this leakage happens
after 296/2 = 248 block encryptions (or decryptions), which sets an upperbound on the
number of plaintext blocks encrypted before the key has to be changed. Modern ciphers,
such as the AES [AES 1997], already use 128-bit blocks to counter this drawback, which
depends only on the block size, namely, is independent of the cipher structure, the number
of rounds and internal cipher components. For Curupira, this vulnerability depends on the
application allowing or not248 block encryptions (under the same key).

7. Related-Key Attack
In [Biham 2002], Biham developed an attack method on arbitrary block ciphers, that de-
pends only on the key size (namely, it is independent of the number of rounds). His attack
is supported by the birthday paradox, and has complexity2k/2 encryptions for ak-bit user
key. For Curupira, the attack complexities for the different key sizes are296/2 = 248;
2144/2 = 272 and2192/2 = 296 encryptions, which set a lower upperbound on the number
of text blocks than the complexity of an exhaustive key search. For Curupira, this attack
may be effective or not depending on the application allowing2k/2 encryptions (of the
same block) under different keys.

Concerning related-key attacks, notice that the operations in the key schedule of
Curupira are all linear. Even the non-linear S-box, that is applied to only a few bytes of
each subkey, can be undone since the S-box is invertible. These facts motivate an analysis
of the difference propagation across the key schedule, meaning how many subkeys it takes
until all subkey bytes depend on all user key bytes. This analysis involves tracing the (xor)
difference propagation across the key schedule (just like in the encryption framework) and
is left as an open problem.

8. Related-Cipher Attack
In [Wu 2002], Wu described an attack on block ciphers with a variable number of
rounds, or in which the number of rounds could be somehow manipulated by an
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Table 1. Attack complexities on (reduced-round) Curupira.
#Rounds Time Data Memory Attack Source

4 29 29 CP 28 multiset [Barreto and Simplı́cio Jr 2007]
5 223 226 CPACC 224 boomerang Sect. 5.
5 233 224 CP 224 multiset Sect. 3.1.
5 235 211 CP 28 multiset [Barreto and Simplı́cio Jr 2007]
6 238 227 CP 28 multiset [Barreto and Simplı́cio Jr 2007]
6 247.5 250 CPACC 224 boomerang Sect. 5.
6 254 226 CP 224 multiset Sect. 3.1.
6 269.5 251 CP 241.5 imp.diff. Sect. 4.
7 288 296 − 287 CP multiset [Barreto and Simplı́cio Jr 2007]
7 2104 232 CP 232 Gilbert-Minier [Barreto and Simplı́cio Jr 2007]
CP: Chosen Plaintext; CPACC: Chosen-Plaintext Adaptively Chosen-Ciphertext

adversary. The rationale is similar to a slide attack [Biryukov and Wagner 2000,
Biryukov and Wagner 1999]. A suggested countermeasure is to embed the number of
rounds in the cipher, for instance, in the key schedule, so that cipher instances with differ-
ent number of rounds are not useful for this attack. Curupira could become vulnerable to
this attack, since its key schedule does not depend on the number of rounds. Nonetheless,
this vulnerability can only be exploited depending on the application environment.

9. Conclusion and Open Problems

This paper discussed impossible-differential, boomerang and higher-order multiset, plain-
text leakage and related-key attacks on the Curupira cipher. These attacks have not being
discussed before, not even by the cipher designers. Table 1 summarizes the attack com-
plexities and compares them with other known attacks. The results in this paper do not
threaten the full Curupira cipher, for any of the defined key sizes, but complement the
analyses provided by its designers.

The fact that all round components in Curupira are involutions, just like in Khazad
[Barreto and Rijmen 2000], raises the question of attacks based on symmetries of the
computational framework, such as [Biryukov 2003]. For instance, consider 4-round Cu-
rupira, and group the round transformations as follows

θ ◦ π ◦ γ ◦ σk3 ◦ θ ◦ π ◦ γ ◦ σk2 ◦ θ ◦ π ◦ γ ◦ σk1 ◦ θ ◦ π ◦ γ ◦ σk0 =

(θ ◦ π ◦ γ ◦ θ ◦ π) ◦ (σk′

3
◦ σk2) ◦ (θ ◦ π ◦ γ ◦ θ ◦ π) ◦ (σk′

1
◦ σk0),

whereσk′

3
= θ ◦ π(k3), that is, we transformedk3 throughθ andπ in order to

move it through these two transformations. Notice, the key-independent transformation
τ = θ ◦ π ◦ γ ◦ θ ◦ π, interleaved withσk′ ◦ σk. This is the same phenomenon observed by
Biryukov in [Barreto and Rijmen 2000]. This symmetry shall be analysed together with
the key schedule of Curupira, and is left as an open problem.
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A Appendix A

We have discovered 2-round iterative truncated differentials of Curupira. One of these
differentials is described in (7), and it holds with probability2 2−64. Nonetheless, a random
permutation satisfies the output difference of (7) with this same probability. In (7), the
symbol ’δ’ denotes an arbitrary nonzero xor difference byte, and ’0’ a zero xor difference
byte. We use simplyσ without distinguishing any particular round subkey, since its exact
value is not relevant for this analysis.





δ δ δ δ
0 0 0 0
0 0 0 0





θ◦π◦γ◦σ
→





δ δ δ δ
δ δ δ δ
δ δ δ δ





θ◦π◦γ◦σ
→





δ δ δ δ
0 0 0 0
0 0 0 0



 (7)

There are analogous iterative truncated differentials with nonzero byte differences
in the second and third rows of the state.

A dual differential to (7) is (8), with the same probability of2−64.





δ δ δ δ
δ δ δ δ
δ δ δ δ





θ◦π◦γ◦σ
→





δ δ δ δ
0 0 0 0
0 0 0 0





θ◦π◦γ◦σ
→





δ δ δ δ
δ δ δ δ
δ δ δ δ



 (8)

2Thevalue2−64 is due to(28/224)4 = (2−16)4 since it is the probability that three nonzero bytes in a
column of the state beforeθ turn into a single nonzero byte (in a specific position).
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We corroborate that there are at least sixteen active S-boxes indifferential charac-
teristics across four rounds of Curupira. An example is depicted in (9).





δ 0 0 0
0 δ 0 0
0 0 δ 0





π◦γ◦σ
→





δ 0 0 0
δ 0 0 0
δ 0 0 0





π◦γ◦σ◦θ
→





δ 0 0 0
0 0 0 0
0 0 0 0





γ◦σ◦θ
→





δ 0 0 0
δ 0 0 0
δ 0 0 0





π
→





δ 0 0 0
0 δ 0 0
0 0 δ 0





γ◦σ◦θ
→





δ δ δ 0
δ δ δ 0
δ δ δ 0





σ◦π
→





δ δ δ 0
δ δ 0 δ
δ 0 δ δ



(9)
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