Efficient Certificateless Signcryption

Diego Aranha, Rafael Castro, Julio López, Ricardo Dahab

1 Institute of Computing – University of Campinas (UNICAMP)
CEP 13084-971 – Campinas – SP - Brazil

{dfaranha,jlopez,rdahab}@ic.unicamp.br,rafael.castro@gmail.com

1. Introduction

The conventional public key cryptography model includes a central authority that issues certificates and manages a public key infrastructure, requiring significant processing and storage capabilities. Identity-based cryptography (ID-PKC) replaces the traditional public keys with identifiers derived from users’ identities. This facilitates public key validation but introduces the key escrow of private keys by the central authority as a side-effect.

Certificateless cryptography (CL-PKC) is a novel paradigm where the generated costs are reduced without introducing key escrow of private keys.

A signcryption scheme is a technique that provides confidentiality, authentication and non-repudiation in a single integrated operation. The first concrete CL-PKC signcryption scheme was proposed recently in [Barbosa and Farshim 2008]. We propose an efficient CL-PKC signcryption scheme that supports publicly verifiable signatures, and that is more efficient than the first protocol.

2. Bilinear Pairings

Let G_1 and G_2 be additive groups of order q and G_T be a multiplicative group of order q. Let P and Q be the generators of G_1 and G_2 respectively. An efficiently-computable map $e : G_1 \times G_2 \rightarrow G_T$ is an admissible bilinear map if the following properties are satisfied:

1. Bilinearity: given $(Q, W) \in G_1 \times G_2$ and $(a, b) \in \mathbb{Z}_q^*$, we have:
 $$e(aQ, bW) = e(Q, W)^{ab} = e(abQ, W) = e(Q, abW).$$
2. Non-degeneracy: $e(P, Q) \neq 1_{G_T}$, where 1_{G_T} is the identity of the group G_T.

3. Efficient Signcryption

The proposed signcryption scheme is an extension of an efficient ID-PKC signcryption scheme proposed in [McCullagh and Barreto 2004], inheriting the public verification feature. Our protocol has the following algorithms:

Setup. Given a security parameter k, the central authority (Key Generation Center – KGC) generates a k-bit prime number q, bilinear groups (G_1, G_2, G_T) of order q with generators $P \in G_1$ and $Q \in G_2$, and an admissible bilinear map e. The KGC also chooses hash functions $H_1 : \{0, 1\}^* \rightarrow \mathbb{Z}_q^*$, $H_2 : G_T \rightarrow \{0, 1\}^n$ and $H_3 : \{0, 1\}^n \times G_1 \times G_1 \rightarrow \mathbb{Z}_q^*$, selects at random the master key $s \in \mathbb{Z}_q^*$ and computes $P_{pub} = sP$ and $g = e(P, Q)$. The KGC publishes the system parameters $(q, G_1, G_2, G_T, P, Q, e, g, P_{pub}, H_1, H_2, H_3)$ and keeps s in secret.

Extract. Let y_E denote $H_1(ID_E)$. Given identity ID_A, the KGC computes and issues to user A the partial private key $D_A = (y_A + s)^{-1}Q \in G_2$;
Keygen. User \(A \) selects at random \(x_A \in \mathbb{Z}_q^* \) as a secret value and computes the private key \(S_A = x_A^{-1}D_A \in \mathbb{G}_2 \) and the public key \(P_A = x_A(y_AP + P_{pub}) \in \mathbb{G}_1 \). The resulting key pair is \((P_A, S_A)\). Observe that \(e(P_A, S_A) = g \).

Signcrypt. To signcrypt the message \(M \), user \(A \) computes:
1. \(r \leftarrow R \mathbb{Z}_q^*, u \leftarrow r^{-1}, U \leftarrow g^u; \)
2. \(C \leftarrow M \oplus H_2(U); \)
3. \(h \leftarrow H_3(C, rP_A, uP_B); \)
4. \(T \leftarrow (r + h)^{-1}S_A; \)
5. Return \((C, rP_A, uP_B, T)\).

Unsigncrypt. Upon reception of the signcrypted message \((C, R, S, T)\), user \(B \) computes:
1. \(h' \leftarrow H_3(C, R, S); \)
2. \(V \leftarrow e(R + h'P_A, T); \)
3. \(r' \leftarrow e(S, S_B); \)
4. \(M' \leftarrow C \oplus H_2(r'); \)
5. If \(V = g \), return \(M' \). Otherwise, return \(\perp \) indicating error.

The scheme is publicly verifiable, as the computation of \(V \) does not depend on private information. If \((C, R, S, T)\) is correct, we can see that the protocol works:
- \(V = e(R + hP_A, T) = e((r + h)P_A, (r + h)^{-1}S_A) = e(P_A, S_A) = g. \)
- \(e(S, S_B) = e(uP_B, x_B^{-1}D_B) = e(ux_B(y_BP + P_{pub}), x_B^{-1}(y_B + s)^{-1}Q) = g^u = U. \)

The computational costs of the proposed protocol and the scheme from [Barbosa and Farshim 2008] are presented in Table 1. The cost is measured in terms of bilinear pairings (\(e \)), exponentiations in \(\mathbb{G}_T(a^x) \), scalar multiplications in \(\mathbb{G}_1 \) or \(\mathbb{G}_2 \) (\(kP \)), inversions in \(\mathbb{Z}_q^* \) (\(a^{-1} \)) and hash functions (\(H \)) computations.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Protocol</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preprocessing</td>
<td>[Barbosa and Farshim 2008]</td>
<td>Proposed</td>
</tr>
<tr>
<td></td>
<td>Proposed</td>
<td>0</td>
</tr>
<tr>
<td>Signcrypt</td>
<td>[Barbosa and Farshim 2008]</td>
<td>Proposed</td>
</tr>
<tr>
<td></td>
<td>Proposed</td>
<td>0</td>
</tr>
<tr>
<td>Unsigncrypt</td>
<td>[Barbosa and Farshim 2008]</td>
<td>Proposed</td>
</tr>
<tr>
<td></td>
<td>Proposed</td>
<td>2</td>
</tr>
</tbody>
</table>

† Two of the scalar multiplications can be simultaneous

4. **Future work**

Future works will be centered on proving the scheme security in a formal setting.

References
