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Abstract. This paper describes the implementation, as an instant messaging
client, of a decentralised communication protocol, employing strong cryptog-
raphy between nodes. This is achieved by building upon the OpenChord Dis-
tributed Hash Table (DHT) implementation, with a hybrid cryptosystem for mu-
tual authentication and communication, using the Needham-Schroeder-Lowe
public-key protocol, RSA, CBC-mode AES, and HMACs for integrity verifica-
tion of messages.

1. Background

Every day, millions of people communicate electronically via the In-
ternet. The vast majority of this communication is transmitted in the
clear[Mannan and van Oorschot 2006].Much of this communication relies upon
centralised systems, requiring that users give the owners of these systems implicit trust if
they are to communicate at all.

A centralised system means having a single point of control and a potential sin-
gle point of failure in the network. As most Instant Messaging (IM) clients do not use
end-to-end encryption, communication may be trivially intercepted at relaying servers
by authorities and other eavesdroppers. This is a major concern when communicating
important or secret information, or in locations where freedom of speech is restricted.

Some partial solutions do exist, for instance Skype offers end-to-end encryption
for VoIP, however it does so in a closed way, with a central login server, leaving it vul-
nerable to DoS attacks. This was seen in 2007, when an update that was rolled out to
all users at once caused every client to disconnect and reconnect, causing a DoS for 220
million users[Fildes 2007].

What is needed is a completely decentralised application, employing strong, end-
to-end encryption, in order to allow secure communication where freedom of speech is
restricted. The application must be resistant to censorship or compromise, either by re-
pressive governments, or by malevolence (or foolishness) on the part of any controlling
organisation. My intention has been to implement such a system.

This paper begins with a very brief background in peer-to-peer networking in
section |2} followed by an explanation of the choices made for my cryptographic imple-
mentation, with the basic concepts and protocols and my reasoning for their use set out
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in sections [3]and §] A number of attacks are considered at each stage, with solutions to
these laid out and their implementation discussed. Sections [3] [6] and [7] deal with the net-
work aspects of the project, such as packet structure and the use of a distributed storage
schema, whilst section [§] details the testing strategy for network code. Finally, sections ]
and[I0explore the limitations of my implementation, and present ideas for future work in
developing this project.

2. Peer-to-peer Networks

One of the most common applications for decentralisation is in peer-to-peer networks,
the majority of which are based on Distributed Hash Tables (DHTs). DHTs allow a hash
table (a set of (key, value) pairs) to be distributed across a set of nodes (meaning clients in
a system, in this example the computers connected in the network), allowing any node in
the DHT to retrieve the value from a given key.

My implementation is based upon the Chord DHT[Stoica et al. 2001], in which
nodes are arranged in a ring, and assigned a 160-bit identifier (a SHA-1 hash). In an n-
node network, nodes keep a list of O(log n) other nodes, allowing lookups to be performed
with O(log n) messages.

The Chord protocol automatically adjusts its internal tables to reflect newly joined
nodes as well as node failures, which ensures that the node responsible for a key can
always be found.

3. Identity Verification and Key Exchange

The Needham-Schroeder public-key protocol provides a simple means for two parties
to each verify the identity of the other. I have chosen to use a modified version of this
protocol, the Needham-Schroeder-Lowe (N-S-L) protocol, which includes a change that
fixes a vulnerability to a man-in-the-middle attack[Lowe 1993].

1. A— B:{Na, A}k,
2. B—>A2{NA,NB,B}KA
3. A—>BZ{NB}KB

The N-S-L protocol has been proven correct [Backes and Pfitzmann 2004], and
formally verified using a HOL (Higher Order Logic) theorem prover[Paulson 1998]].

The protocol requires public and private keys for encryption and decryption, and
therefore a public-key algorithm is required. As itis used as part of a hybrid cryptosystem,
a symmetric-key protocol is also required, whose key I can exchange as a nonce in the
above protocol. This requires that the symmetric-key protocol uses keys that are random,
so as not to interfere with the behaviour of the key-exchange scheme.

RSA was chosen as my public-key protocol for use with N-S-L, and AES as
the symmetric-key protocol, both implemented using the Java Cryptographic Extension
(JCE).

N-S-L was chosen in order to make use of public-key cryptography to give each
user a permanent identifier. This gives users the ability to prove their identities to one
another, and offers the possibility in future to implement some form of PKI for users to
create webs of trust.
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In implementing the N-S-L protocol itself, I discovered that there was no standard
library in Java, thus I have had to implemented it from scratch as two classes, for the two
situations in which the application is required; either initiating the protocol as party A, or
responding to it as party B. Each class contains generation and verification methods for
each step.

The reason for the lack of such a library appears to be due to the wide adoption of
Kerberos (which is available as a standard library), which seems to have been considered
sufficient so that no N-S-L implementation is included.

I have therefore ended up spending a great deal of time implementing the protocol
myself and testing it heavily to ensure correct behaviour. Whilst this has meant more of
my time was spent focusing on the core of the application (leaving less time to persue the
ideas presented in sections [9)and[I0), it has allowed me to become much better acquainted
with the various attacks on protocols, and the processes that led to the development of NS-
L.

3.1. Nonces and Identifiers

N-S-L requires nonces to prevent replay attacks, etc. To generate these I have used Javas
SecureRandom class, which was chosen because it provides a cryptographically strong
pseudo-random number generator, complying with statistical tests set out in FIPS 140-2
(section 4.9.1) and RFC 1750[Eastlake, 3rd et al. 1994]].

A 256-bit nonce size was chosen because of its use as part of a hybrid cryptosys-
tem: nonce N4 is replaced with two 128-bit blocks, used as the shared symmetric (AES)
key and message authentication (HMAC) key (discussed in section .T)) respectively. Us-
ing the keys in this way does not open new side channel attacks, as both the symmetric
and authentication keys can be any random series of bytes, with no constraints placed on
their selection.

N-S-L requires both parties in the protocol to have an identifier (which could, for
instance, be the users RSA public key). As Javas Cipher class does not permit encrypt-
ing multiple blocks using RSA (and splitting up these messages could be insecure), each
N-S-L message is limited to the length of the RSA ke Therefore, using each partys
RSA public keys as an identifier is not possible, as these are longer than than the maxi-
mum block size.

A solution to this is for each party to use a fingerprint (in this case a hash of their
public key) as an identifier, which can be verified by the receiver using the same hash
function. This requires a preimage resistant hash function, and for this I have chosen the
SHA-256 algorithm as it provides the largest output hash size that will still fit inside the
key-exchange protocol. This is implemented using Javas MessageDigest class.

4. Communication Encryption

Naturally, public-key cryptography would be too slow for instant messaging itself. In-
stead, I have selected the Advanced Encryption Standard (AES) for symmetric-key en-
cryption due to its wide use and adoption as a standard by the National Institute of Stan-
dards and Technology[National Institute of Standards and Technology (NIST) 2001]. To

'Minus the bits required by the padding scheme.
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prevent the possibility of certain types of replay attack, I have chosen the Cipher-Block
Chaining (CBC) mode of operation.

CBC mode requires an Initialisation Vector (IV). It is not necessary to encrypt the
IV, so this can be prepended to each message to be used be the receiver. To minimise
the possibility of IV collisions, which could allow an eavesdropper to detect that the
same message had been sent twice, the IV is 128 bits in length. I do not worry too
much with the IV, since it could even be fixed, since we user randomly generated key
derivated from the nonces. My AES implementation makes use of the JCE, and provides
methods to generate AES keys and initialisation vectors, used by my cryptography API
when generating messages for communication.

4.1. Message Authentication Code

To allow the integrity of messages to be verified, each message includes a Message Au-
thentication Code (MAC) to allow the remote user to verify that the content of a message
has not been modified in transit. When combined with a cryptographic hash function
and secret key, these are called keyed-Hash Message Authentication Codes (HMACS).
HMACS are defined in RFC 2104[Bellare et al. 1997]], and described below.

HMAC g (m) = h((K ® opad), h((K @ ipad), m))

Where h is a cryptographically secure hash function, K, is a secret key, ipad and
opad are fixed strings used for padding, and m is the message to be authenticated.

As with AES, the secret key may be any random series of bytes, and can thus also
be exchanged during the handshake. The HMAC is applied to the block consisting of
the encrypted message, identifier and counter (described in section to prevent replay
attacks.

HMAOKm ({m, i, C}KAB>

Javas own HMAC library does not make it possible to cast between HMAC keys
and byte arrays, as it does not include methods to construct keys from a given input, unlike
most other methods. As I require the ability to convert to and from streams of bytes for
transmission over a network, I implemented the above HMAC definition directly using
RFC 2104[Bellare et al. 1997]], using byte arrays as keys, and verified my implementation
by testing it against NISTs reference figures.

4.2. Preventing Attacks

By itself, an HMAC will not prevent replay attacks. Therefore an attacker can replay a
message which would be accepted by the receiver as valid, breaking my message integrity
requirements. In order to prevent this, a counter is added to the message before encryp-
tion, and incremented each time a message is sent. Any message whose counter value
is not strictly greater than the previous message is rejected. Any message whose counter
value is not as expected will cause the application to issue a warning that a message has
been missed.

I have used the Java BigInteger class to provide a counter, as it allows arbi-
trarily large numbers that do not wrap around, and simplicity of conversion to and from
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byte arrays. The counter is only reset when a new session is started (that is, when both
the symmetric and HMAC keys are changed).

In addition to a counter, the encrypted message also requires an identifier for the
sender. This is to prevent a replay attack, possible by a race condition, in which a sender
might have his own message replayed to him, as shown in the example below.

1. A= B:{m,c}k, s, h
2. C— A:{m,cli sl

Where m is the message, c is the counter and h is the HMAC. In the above exam-
ple, C eavesdrops on As message to B, and sends it back to A. As the message has a valid
HMAC and correct counter value, A believes that the message is from B. By adding an
identifier, A can see that the message is his own, and will reject it; this is the property we
expect when using HMAC: for verifying authenticity[Anderson 2001]].

5. Packet Structure

As packets are to be transmitted over a network, they must to have a well-defined struc-
ture, in order that they can be correctly constructed and read by both parties. The structure
of the key exchange and communication messages is described in sections|5.1|and |5.2|re-
spectively. Figure|l|gives an overview of the communication message structure.

5.1. Handshake Packets

The N-S-L handshake packets consist of a combination of nonces and identifiers, rep-
resented by Nx and X respectively, where Xis the relevant party. The block is then
encrypted using the other partys public key, K x.

1. A— B:{Na, A}Kp
2. B%Ai{NA,NB,B}KA
3. A%B{NB}KB

Both nonces and identifiers are 256 bits in length, thus the longest message (step
(2) above) is 768 bits long, below the maximum 1024-bit message length (minus the
padding scheme) for my RSA implementation.

5.2. Communication Message Packets

The Packet St ructure class provides the implementation for the structure of message
packets, and contains methods both for encoding and decoding these packets.

A — B : IV {Identifier, Counter, Message}k ,,, HMAC

Messages consist of an Initialisation Vector (IV), an encrypted block consisting
of the identifier, a counter, and the message encrypted with the shared key K 45, and the
Message Authentication Code (HMAC) of the encrypted block (Figure|T)).

6. Distributed Storage Schema

In order to be searchable and accessible, each user must store a set of values in the DHT to
allow other users to retrieve their details and initiate connections. Each user is identified
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Figure 1. Message packet structure.

by their key fingerprint (a 256-bit hash of the users public key), which can be used to
retrieve the users public key, IP address, DHT port and connection port.

Identifier — PublicKey, I PAddress, DHT Port, HandshakePort

Performing a DHT lookup on an identifier will return a HashMap object contain-
ing the above values. This detail is hidden within the API, which writes all values when
the DHT object is constructed, and provides methods to the user to retrieve each of the
values using the identifier.

These methods include validation of the values returned, for instance checking
that the returned public key does indeed hash back to the identifier used to perform the
lookup, to prevent attacks based on modification of the DHT. More attacks in this vein
are discussed in section[9.2]

7. Connection Handling

Once a node has joined the DHT, the ListenerThread class is instantiated. This
waits for incoming connections and starts an instance of the Handler class each time a
connection from another node is made. The handler thread then performs the handshake
and communication using the cryptography API.

When initiating connections, the module uses the DHT API to perform a lookup of
the address of the remote node, and again hands over to the cryptography API to initialise
the handshake and allow communication.

As noted above, the ListenerThread class is responsible for controlling in-
stances of the Handler class. Each handler is responsible for a different connection,
allowing communication with many users at once. The handler is responsible for per-
forming its part of the handshake (via the cryptography API), and runs until one of the
users ends the communication by closing that part of the user interface.



VIl Simposio Brasileiro em Segurancga da Informagdo e de Sistemas Computacionais 439

7.1. IP Address Issues

Java has a known issue with GNU/Linux systemf] in which Javas method for determining
a computers external IP address is ambiguous, and often returns the loopback address,
which is not helpful when reporting ones IP address to other nodes.

As a partial solution, I have implemented a method to enumerate all addresses of
all network cards connected to the computer, which the user interface then allows the user
to choose from (or provide a different IP address if necessary).

8. Testing with PlanetLab

PlanetLab is a geographically distributed overlay network designed to support the deploy-
ment and evaluation of planetary-scale network services.[Bavier et al. 2004

Stability and resilience testing of network and decentralisation code included use
of PlanetLab, deploying my code across hundreds of nodes around the world. In order
to make use of the PlanetLab service, a user requires a slice, a virtual operating system
spread across the many hundreds of nodes in the PlanetLab network. This was very kindly
provided by Dr. Steven Hand.

9. Limitations

I am aware of a number of shortcomings of my project that I have been unable to address
properly due to time constraints, and these are discussed here.

9.1. Formal Proof of Correctness

Whilst the individual parts of my cryptographic implementation have been carefully tested
for correctness, I have not shown that this is true for the composition of these elements. A
formal proof of correctness for the symmetric-key portion of my communication protocol
would allow me to be certain that no attacks against it are possible[Wang et al. 2006]].
However, after discussion with my supervisor it appears that doing so would at best take
several months to complete and require learning far beyond the scope of the undergraduate
course.

9.2. Denial of Service in DHT

As each node is responsible for a certain proportion of entries in the DHT, and as any user
is able to modify an entry whose key he knows, a malicious user might create a Denial
of Service (DoS) in cases where he is in control of an entry requested by another user.
While this does not compromise the security of communication (public keys are checked
against identifiers by way of a cryptographically secure hash function), it might prevent
communication in the first place if a user is unable to retrieve another users details, or is
given incorrect details which are then rejected.

This could be partially solved by key-replication (a side effect of increasing net-
work stability, discussed above), however this still does not guarantee that DoS is not
possible, it merely makes it less likely: as the number of replications is increased, the
probability that all replicas are controlled by malicious nodes drops off sharply. This
also requires removing the contacts list functionality, whereby users can see all connected
nodes in the network (as opposed to just user-input contacts), to prevent a malicious user
iterating through the list and modifying DHT entries and replicas.

2Bug #4665037, InetAddress.getLocalHost() ambiguous on Linux systems
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9.3. Denial of Service in Communication

Decryption of received messages can lead to a denial of service if a malicious user sends
data more quickly than the application can decrypt it. This can be mostly solved by mod-
ifying the protocol in such a way that the sender must do more work than the receiver for
communication. This might involve the sender calculating certain checks on the message
which are more resource-intensive to generate than to verify by the receiver.

9.4. Public Keys

My application is based around a user-centric trust model, where users are responsible for
exchanging public keys in a trusted way if they are to trust one anothers identities when
communicating.

As my requirement is for a completely decentralised system, I was unwilling to
provide public key servers, since these require either relying on a centralised system, or
implementation in such a way that keys can be signed in a decentralised system. This
would mean a great deal of research into attacks on such systems (as well as DoS issues),
and implementation of a very large piece of PKI functionality that was not a part of my
main goal.

Vulnerabilities to consider in such systems include Sybil attacks, based on subvert-
ing reputation systems[Douceur 2002]], and thus range far beyond cryptographic attacks.

9.5. Plausible Deniability

In the course of this project, I researched quite seriously into implementing functionality
for plausible deniability, as this might be particularly valuable to users operating where
freedom of speech is restricted.

Depending on how it is implemented, plausible deniability can mean several
things for the user, such as giving users the ability to plausibly deny that they sent or
received a message, that it originated with them rather than simply being routed through
them, or that they can decrypt a given message.

One possibility for providing this is to implement anonymous routing between
nodes, such that it is not possible for an eavesdropper to know who is communicating with
whom. Sadly, after conversation with Stephen Murdoch (a member of the Tor projectEI)
it seems that implementing anonymous routing is significantly beyond the scope of an
undergraduate project.

A simpler means of providing some small amount of deniability might have been
implemented from the outset by using Diffie-Hellman key exchange for session keys,
which would mean that if a users long-term private key is compromised it still cannot
be used to decrypt the communication between users[Diffie and Hellman 1976]. Another
option was MQV (Menezes-Qu-Vanstone)[Menezes et al. 1995]], an authenticated proto-
col for key agreement based on the Diffie-Hellman scheme, substituting then the whole
NS-L scheme.

3Tor provides anonymity by routing traffic via a series of nodes in the Tor network, using incremental
encryption such that no single node knows a packets complete route. See http://www.torproject.org/
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As it stands, communication can be reconstructed at a later date by an eaves-
dropper if either users private key is compromised, and I feel that this is a flaw in my
implementation.

10. Future Work

This project offers a number of extremely interesting avenues for extension, some of
which I have researched in-depth, while others remain unexplored. The more immediate
extensions that I would wish to implement given time are listed below.

¢ Diffie-Hellman As discussed above, implementing Diffie-Hellman key exchange
would provide a simple and effective form of plausible deniability for information
communicated where long-term private keys are later recovered. Also we can
study to change the whole sheme for a MQV one.

e Tor Routing my application over the Tor network would provide a much greater
level of plausible deniability, as users can deny ever sending messages to one
another. This would require overcoming several hurdles, not least the operation of
the DHT.

e Resilience Replication of entries across multiple nodes greatly increases the re-
silience of the network as a whole, as multiple nodes are responsible for keys and
restabilising becomes less important. This could be implemented without signifi-
cant degradation of performance by performing lookups in parallel.

e Preventing Denial of Service Implementing replication of entries also provides
some protection from DoS vulnerabilities in the DHT, as incorrect entries can be
identified by users and rejected. Denial of service in communication can be dealt
with as described above, by modifying the protocol to make the sender do more
work than the receiver.

In the long term, expanding my application APIs to provide a base on which other
applications can be built would allow for a much wider variety of uses, such as providing
a distributed data store, peer-to-peer functionality, or multimedia communication, such as
voice chat.
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