
An Analysis of FOX

Jorge Nakahara Jr

1jorgenakahara@yahoo.com.br

Abstract. Thispaper1 presents new cryptanalytic results on reduced-round ver-
sions of the FOX block cipher, also known as IDEA-NXT. We can recover all
subkeys of 2-round variants of FOX, and derive internal cipher data from r-
round FOX, for any r> 2. This information leakage phenomenon is based only
on the high-level Lai-Massey scheme, and was already observed in Feistel ci-
phers such as DES, but is absent even in IDEA, whose design inspired the FOX
ciphers. Moreover, this paper presents the first impossible-differential analysis
of reduced-round FOX, and new results on 4-round and 5-round FOX.

1. Introduction

FOX, also known as IDEA-NXT, is a family of block ciphers designed by P. Junod and
S. Vaudenay [Junod and Vaudenay 2004]. There are two main variants of FOX, whose
parameters are specified in Table 1, where 12≤ r ≤ 255, and 0≤ k ≤ 256, with k a
multiple of 8.

The high-level structure of the FOX ciphers uses the Lai-Massey scheme, orig-
inally designed for the IDEA block cipher [Lai et al. 1991, Lai 1995]. All attacks and
internal cipher data recovered from FOX in this paper were obtained due to the high-level
structure of a round, which is based on the round structure of IDEA.

FOX ciphers are byte oriented, and all byte operations are performed in GF(28) =
GF(2)[x]/(p(x)), wherep(x) = x8+ x7+ x6+ x5+ x4+ x3+1 is an irreducible polynomial
over GF(2). FOX64 and FOX64/k/r encryption operations iterater − 1 (full) rounds,
denotedlmor64, followed by a final round denotedlmid64. Formally,lmor64, lmid64:
ZZ64

2 × ZZ64
2 → ZZ64

2 , with inputs a 64-bit data block and 64-bit subkey, and as output a
64-bit data block (Fig.2). The encryption of a 64-bit data blockP, under a keyK, results
in the ciphertext blockC = lmid64(lmor64(. . . lmor64 (P,RK0), . . ., RKr−2), RKr−1),
where the 64-bit subkeysRKi, 0 ≤ i ≤ r − 1, are derived fromK according to a key
schedule algorithm. The decryption transformation uses a round function calledlmio64:
ZZ64

2 × ZZ64
2 → ZZ64

2 , and recovers the plaintext blockP, from a given ciphertext blockC,
and keyK, asP = lmid64(lmio64(. . . lmio64 (C,RKr−1), . . ., RK1), RK0).

1Researchfunded by FAPESP under contract 2005/02102-9.

Table 1. Parameters of the FOX ciphers.

Cipher Block Size (bits) Key Size (bits) #Rounds
FOX64 64 128 16
FOX128 128 256 16
FOX64/k/r 64 k (0 ≤ k ≤ 256) r (12≤ r ≤ 255)
FOX128/k/r 128 k (0 ≤ k ≤ 256) r (12≤ r ≤ 255)

VIII Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais 187

FOX128 and FOX128/k/r encryptionschemes iterater − 1 (full) rounds, denoted
elmor128, followed by a final round denotedelmid128. Similarly, a modified round
functionelmio128 is used for decryption. Formally,elmor128, elmid128, andelmio128:
ZZ128

2 × ZZ128
2 → ZZ128

2 . The encryption of a 128-bit blockP under a 128-bit keyK results
in a 128-bit ciphertext blockC as follows: C = elmid128(elmor128(. . . elmor128(
P,RK0), . . ., RKr−2), RKr−1), whereRKi, 0 ≤ i ≤ r − 1 are 128-bit subkeys derived from
K using a key schedule algorithm. Analogously, the decryption of a data blockC, given
a keyK, results in the plaintext blockP given byP = elmid128(elmio128(. . . elmio128
(C,RKr−1), . . ., RK1), RK0).

The elmor64 round function is built as a Lai-Massey scheme combined with an
orthomorphism mappingor:ZZ32

2 → ZZ32
2 , defined asor(a,b) = (b,a⊕b), wherea,b ∈ ZZ16

2 ,
and⊕ is bitwise exclusive-or. Formally,Y = YL||YR = lmor64(XL||XR) = or(XL⊕ f 32(XL⊕

XR,RKi))||(XR ⊕ f 32(XL ⊕ XR,RKi)), where|| denotes concatenation of bit strings. The
lmid64 function is the same aslmor64 but withoutor. The inverse ofor is denotedio:
ZZ32

2 → ZZ32
2 ,and defined asio(a,b) = (a ⊕ b,a). The mapping f32:ZZ32

2 × ZZ64
2 → ZZ32

2 is
bijective, taking a 32-bit data,X and a 64-bit round subkey,RKi = RK0i||RK1i as inputs and
returning a 32-bit output,Y = f 32(X,RKi) = sigma4(mu4(sigma4(X ⊕ RK0i)) ⊕ RK1i) ⊕
RK0i. The transformationsigma4 consists of parallel application of a fixed 8× 8-bit S-
box, denotedS, bytewise. Its inverse is denoted simplyS−1. The linear transformation
mu4 consists of a multiplication of the intermediate data with a 4× 4 matrix over GF(28).
Given a 32-bit inputA = (A0,A1,A2,A3) to mu4, its output isB = (B0, B1, B2, B3):































B0

B1

B2

B3































=































1 1 1 x
1 x−1 + 1 x 1

x−1 + 1 x 1 1
x 1 x−1 + 1 1































·































A0

A1

A2

A3































Previously known analysis of reduced-round FOX ciphers were reported by Junod
in [Junod and Vaudenay 2004], and in [WEWoRC 2005].

Some noteworthy properties of the orthomorphismor (and its inverseio) are:

• or has order 3, namelyor(or(or(a,b)))= or3(a,b) = (a,b); the same applies toio;
• (a,b)⊕ or(a,b)⊕ or2(a,b) = (0,0), for any (a,b) ∈ ZZ16

2 × ZZ16
2 ;

• or(a,b) = (a,b)⇔ (a,b) = (0,0);
• or2(a,b) = (a,b)⇔ (a,b) = (0,0);
• or(a,b) = io(a,b)⇔ (a,b) = (0,0).

The orthomorphism is essential in the round structure of FOX. Consider
FOX64/k/r, butwithout the orthomorphism mapping. Let the plaintext be denoted
P = (PL,PR), and the ciphertext,C = (CL,CR), and consider the exclusive-or of the
two 32-bit words in a block, at the input and output afterr rounds. Since the output of
every f32 instance is exclusive-ored to both words in a block at the end of every round, it
follows thatPL⊕PR = CL⊕CR, that is, the f32 values are canceled in pairs. This invariant
allows to distinguish this weak FOX64/k/r variant from a random permutation, for any
r > 0 by simply comparing the xor of input words with the xor of output words (a 32-bit
distinguisher that would hold with probability 2−32 in a random permutation). Similarly,
in FOX128/k/rwithout the orthomorphism, the exclusive-or of all four 32-bit words of
plaintext and ciphertext blocks are also equal, for anyr > 0.

188 Anais

f32

f32

f32

A B

C D

E F

or

or

or

HG

A

or

or

or

or

B C D

E F G H

J K LI

M N O P

f64

f64

f64

or or

(a) (b)

RK0

RK1

RK2

RK0

RK1

RK2

Figure 1. (a) 3-round FOX64/k/r, and (b) 3-round FOX128/k/r.

This paper is organized as follows: Sect. 2. presents an attack on 2-round
FOX64/k/r requiring only two known plaintext-ciphertext pairs. Sect. 3. describes non-
trivial information leaked fromr-round FOX64/k/r, forr > 2. Sect. 4. presents an attack
on 2-round FOX128/k/r. Sect. 5. describes non-trivial information leaked fromr-round
FOX128/k/r, forr > 2. Sect. 6. describes impossible differential attacks on reduced-round
FOX. Sect. 7. concludes the paper.

2. Key-recovery Attack on 2-Round FOX64/k/r

A consequence of the Lai-Massey scheme, in both FOX64/k/r and FOX128/k/r, is that the
input of the first and of the last roundfx function, x ∈ {32,64}, is always known from
the plaintext and the ciphertext blocks. For example, in Fig. 1(a),A ⊕ B = io(C) ⊕ D,
and E ⊕ F = io(G) ⊕ H. This is also a consequence of the absence of key-dependent
pre-whitening and post-whitening, such as in the DES [NBS 1977].

Consider FOX64/k/r with two full rounds, namely,Y = elmor64(elmor64 (X,
RK0), RK1). There is a straightforward attack that requires only two known plaintext-
ciphertext (KP) pairs. Let the first KP pair be (X1,Y1), with X1 = (A||B), andY1 = (E||F);
and the output of the first round be (C||D), with A, B, C, D, E, F ∈ ZZ16

2 (the first 2 rounds
in Fig. 1(a)). Thus, from the round structure (or Lai-Massey scheme) of FOX64/k/r, it
follows that

A⊕ B = io(C) ⊕ D (1)

and
C ⊕ D = io(E) ⊕ F . (2)

From (1) and (2), we obtain:

io(E) ⊕ F = or(A⊕ B⊕ D) ⊕ D→ D ⊕ or(D) = or(A⊕ B) ⊕ io(E) ⊕ F , (3)

VIII Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais 189

and
io(E) ⊕ F = C ⊕ A⊕ B⊕ io(C)→ C ⊕ io(C) = A⊕ B⊕ io(E) ⊕ F . (4)

If D = (d1||d2), thenor(D) ⊕ D = (d1 ⊕ d2)||(d1). It follows that or(D) ⊕ D uniquely
determinesD. Similarly, for io(C) ⊕C. Thus, information on the plaintext (A||B), and the
ciphertext (E||F) allows one to derive information from the middle of 2-round FOX64/k/r.

GivenC andD, it is possible to attack both f32 functions, since both their input and
output are known. For example, the input to the f32 in the first round isA⊕B, and its output
if io(C) ⊕ A or B⊕ D. These values represent a 32-bit distinguisher: f32(A⊕ B) = B⊕ D.
Given these values, and the description of f32 in Sect. 1., one can guess the full 32-bit
RK00, and obtain a unique value for the full 32-bitRK10. This value can be verified
using a second plaintext pair (A′||B′). There is a 2−32 chance of a false alarm. Using
another plaintext-ciphertext pair the number of remaining false keys is (264−1) · (2−32)2 <

1. Analogously for the f32 in the second round, its input isC ⊕ D, and its output is
io(E)⊕F. The total attack effort is 2·232 f32 evaluations, or about 232 2-round FOX64/k/r
computations, and 2 KP pairs, to recover both round subkeys (128 bits). This attack
works independently of the key schedule algorithm (moreover, it does not apply to 2-
round IDEA [Lai 1995]). Thus, it holds for both FOX64 and FOX64/k/r.

3. Information Leakage from r-round FOX64/k/r, r > 2

In this section, we derive internal cipher data from FOX64/k/r, forr > 2 using only
known plaintext. As an example, considerr = 3. Let,Y = elmor64(elmor64(elmor64(
X, RK0), RK1), RK2). Applying a similar reasoning as in Sect.2., let the plaintext be
denotedX = (A||B), the output of the first round be (C||D), the output of the second round
be (E||F) and the ciphertext beY = (G||H) (Fig. 1(a)). Then, the same relations (1) and
(2) can be derived, plus the following

io(G) ⊕ H = E ⊕ F . (5)

Combining (1), (2), and (5), results in the following relations depending only on
plaintext (A||B) and ciphertext (G||H). For example, from (5), it follows that

io(G) ⊕ H = E ⊕ F = C ⊕ D ⊕ io(E) ⊕ E = or(A⊕ B⊕ D) ⊕ D ⊕ io(E) ⊕ E→

D ⊕ or(D) ⊕ E ⊕ io(E) = or(A⊕ B) ⊕ io(G) ⊕ H →

E ⊕ or(D) ⊕ or(E ⊕ or(D)) = or2(A⊕ B) ⊕G ⊕ or(H) . (6)

Thus,E ⊕ or(D) can be uniquely determined. Similarly, the following relations can be
obtained

C ⊕ E ⊕ io(C ⊕ E) = A⊕ B⊕ io(G) ⊕ H , (7)

F ⊕ or(D) ⊕ or(F ⊕ or(D)) = or2(A⊕ B) ⊕ io(G) ⊕ H , (8)

and
F ⊕C ⊕ or(F ⊕C) = or(A⊕ B) ⊕ io(G) ⊕ H , (9)

which provideF ⊕ or(D) andF ⊕C. All of these relations leak internal information from
3-round FOX64/k/r, given only known plaintext. This phenomenon is absent in IDEA
[Lai et al. 1991].

190 Anais

The same reasoning can be applied tor-roundFOX64/k/r, r > 3. The informa-
tion leaked refers to 32-bit exclusive-or combination of intermediate cipher data acrossr
rounds of FOX64/k/r, using only known plaintext.

Another approach at deriving non-trivial internal cipher data from FOX64/k/r is
the following: considerr = 3, a plaintext blockX = (A||B), and the corresponding cipher-
text blockY = (G||H), with A = (a1||a2), B = (b1||b2), G = (g1||g2), andH = (h1||h2), ai,
bi, ci, di ∈ ZZ8

2, 1 ≤ i ≤ 2. Moreover, let the 32-bit outputs of f32 functions in the 1st,
2nd and 3rd rounds be denoted (x1||x2), (y1||y2) and (z1||z2), respectively. Using the round
structure of FOX64/k/r, it follows fromB andG that

B⊕ H = (x1 ⊕ y1 ⊕ z1)||(x2 ⊕ y2 ⊕ z2) . (10)

Similarly, fromA andG: G = or((z1||z2) ⊕ or((y1||y2) ⊕ or((x1||x2) ⊕ A))). It results in

A⊕G = (x1 ⊕ y1 ⊕ y2 ⊕ z2)||(x2 ⊕ y1 ⊕ z1 ⊕ z2) . (11)

Equations (10) and (11) provide internal data of 3-round FOX64/k/r, distict from (6), (7),
(8), (9). We can further isolate some values in (10) and (11). LetB⊕G = α = (α1||α2),
andA⊕G = β = (β2||β2). Then,α1 ⊕ β1 ⊕ β2 = x2 ⊕ z1; α1 ⊕ α2 ⊕ β1 ⊕ β2 = y1 ⊕ z2; and
α2 ⊕ β1 ⊕ β2 = x1 ⊕ y2.

Relations (10) and (11) are similar to the exclusive-or combination of round output
values observed in the DES cipher in [Davies and Murphy 1995]. If thef32 function was
non-bijective for a fixed key, then the knowledge of the exclusive-or of several outputs of
f32 functions across several rounds could allow to detect some non-uniform distribution,
as in [Rijmen et al. 1997]. But, thef32 mapping is surjective.

4. An Attack on 2-Round FOX128/k/r

A similar attack to 2-round FOX64/k/r in Sect.2. can be applied to 2-round FOX128/k/r.
Consider FOX128/k/2, namely,Y = elmor128(elmor128 (X, RK0), RK1). Let (X1||Y1)
be a KP pair, withX1 = (A||B||C||D), andY1 = (I ||J||K||L), and (E||F||G||H) be the output
of the first round, withA, B, C, D, E, F, G, H, I , J, K, L ∈ ZZ16

2 (the first 2 rounds in
Fig. 1(b)). From the round structure (or Lai-Massey scheme) of FOX128/k/r, it follows
that

A⊕ B = io(E) ⊕ F , (12)

C ⊕ D = io(G) ⊕ H , (13)

E ⊕ F = io(I) ⊕ J , (14)

G ⊕ H = io(K) ⊕ L . (15)

From (12) and (14), we obtain:

io(I) ⊕ J = E ⊕ F = or(A⊕ B⊕ F) ⊕ F → F ⊕ or(F) = or(A⊕ B) ⊕ io(I) ⊕ J , (16)

so,F can be uniquely determined fromF ⊕ or(F). Analogously, we obtain

io(I) ⊕ J = E ⊕ F = E ⊕ A⊕ B⊕ io(E)→ E ⊕ io(E) = A⊕ B⊕ io(I) ⊕ J , (17)

andE can be uniquely determined fromE ⊕ io(E).

VIII Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais 191

f32

or

f32

or

f32

or

f32

or

f32

or

f32

or

f32

or

f32

or

f32

or

f32

or

f32

f32

f32

f32

f32

f32

X4

X2 X3

X5

X6 X7

X8 X9

X11

X13

X10

X12

X14 X15

X16 X17

X0 X1

or

X16 X17

X19X18

X20 X21

X22 X23

X24 X25

X26 X27

X28 X29

X30 X31

X32 X33

or

or

or

or

or

a

b

RK0
i

j

kc

d l

me

f n

og

ph

RK1

RK2

RK3

RK4

RK5

RK6

RK7

RK8

RK9

RK10

RK11

RK12

RK15

RK14

RK13

Figure 2. Computational graph of full 16-round FOX64.

192 Anais

Similarly, from (13) and (15), we obtain

io(K) ⊕ L = G⊕ H = or(C ⊕ D ⊕ H) ⊕ H → H ⊕ or(H) = or(C ⊕ D) ⊕ io(K) ⊕ L , (18)

so,H can be uniquely determined fromH ⊕ or(H). Analogously, we obtain

io(K) ⊕ L = G ⊕ H = G ⊕C ⊕ D ⊕ io(G)→ G ⊕ io(G) = C ⊕ D ⊕ io(K) ⊕ L , (19)

andG can be uniquely determined fromG ⊕ io(G).

Now, with the recovered values ofE, F, G, andH, we can attack both f64 func-
tions, since we know both their inputs and outputs. For example, the f64 in the first round
has input (A ⊕ B)||(C ⊕ D), and output (B ⊕ F)||(D ⊕ H). It is a 64-bit distinguisher (it
holds with probability 2−64 for a random permutation). From the internal structure of f64,
on can guess the 64-bitRK00, and recover a unique 64-bit value forRK01. This value
can be checked with another KP pair. The number of false alarms after this filtering is
(2128 − 1) · (2−64)2 < 1. The same applies to f64 in the second round, whose input is
(E ⊕ F)||(G ⊕ H) and output (F ⊕ J)||(H ⊕ L). The same two KP pairs can be reused to
recoverRK10 andRK11. The total attack effort is 2· 264 f64 computations, or about 264

2-round FOX128/k/r computations, and 2 KP, to recover two 128-bit subkeys. This attack
is independent of the key schedule algorithm.

5. Information Leakage from r-round FOX128/k/r, r > 2
Similar to Sect.3., one can derive nontrivial information fromr-round FOX128/k/r for
r > 2. As an example, we detail the caser = 3. Consider the following relations from
Fig. 1(b):

I ⊕ J = io(M) ⊕ N , (20)

K ⊕ L = io(O)⊕ P . (21)

Equations (12) up to (21) lead to the following relationI⊕J = io(M)⊕N = or(E⊕F⊕J)⊕
J = or(or(A⊕B⊕F)⊕F⊕J)⊕J→ or2(F)⊕or(F)⊕J⊕or(J) = or2(A⊕B)⊕io(M)⊕N. Thus,
J ⊕ or(F) can be uniquely determined from (A||B) and (M||N). Similarly, the following
relations can be obtained:I ⊕ J = io(M) ⊕ N = or(E ⊕ F ⊕ J) ⊕ J = or(E ⊕ A ⊕ B ⊕
io(E) ⊕ J) ⊕ J → or(E ⊕ J) ⊕ E ⊕ J = or(A ⊕ B) ⊕ io(M) ⊕ N, uniquely determining
E ⊕ J; also,I ⊕ J = io(M) ⊕ N = I ⊕ E ⊕ F ⊕ io(I) = I ⊕ or(A⊕ B⊕ F) ⊕ F ⊕ io(I) →
F⊕or(F)⊕ I ⊕ io(I) = or(A⊕B)⊕ io(M)⊕N, uniquely determiningI ⊕or(F); and finally,
I ⊕ J = io(M)⊕N = I ⊕E⊕F ⊕ io(I) = I ⊕E⊕A⊕B⊕ io(E⊕ I)→ I ⊕E⊕b f io(I ⊕E) =
A⊕ B⊕ io(M) ⊕ N, uniquely determiningI ⊕ E.

Further internal data leaking from FOX128/k/r come fromD ⊕ P andB⊕ N. Let
(x1||x2), (y1||y2), (z1||z2) be the 64-bit outputs from the f64 functions in the 1st, 2nd and 3rd
rounds, respectively. Then,D ⊕ P = x2 ⊕ y2 ⊕ z2, andN = or(z1 ⊕ or(y1 ⊕ or(x1 ⊕ B)))→
or(z1)⊕ or2(y1)⊕ x1 = B⊕N. Similar values can be obtained forr-round FOX128/k/r, for
anyr > 2.

6. Impossible-Differentials of reduced-round FOX
The impossible-differential (ID) technique applied to FOX follows a similar approach as
used against IDEA in [Biham et al. 1999]. This analysis considers truncated differentials.
Thus, let∆ denote an arbitrary nonzero 32-bit xor difference, and 0 a null 32-bit xor
difference. The exact value of∆ does not matter, but only the fact that it is the exclusive-
or of two distinct values.

VIII Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais 193

6.1. ID Distinguishers of FOX64
We have found several 3-round ID distinguishers for FOX64, using truncated differen-
tials. For instance, consider a plaintext difference of (∆,∆,∆,∆), and an output difference
of (∆,∆,0,∆) after three full rounds. At the first round, the input difference to f32 is (0,0).
Consequently, the round output difference is (∆,0,∆,∆). The input difference of the sec-
ond f32 is (0,∆). The third round output difference, (∆,∆,0,∆), leads to a difference of
(0,∆,0,∆) beforeor, and an input difference of (0,0) to the third f32 mapping. Thus, the
output difference of the second round is (0,∆,0,∆). Consequently, the output difference
of the second f32 has to be (∆,0)⊕ (∆,0) = (0,0) (due to the left 32-bit output half) and
also (0,∆) ⊕ (∆,∆) = (∆,0) (due to the right 32-bit output half). This is a contradiction
because f32 is a bijective mapping, and the input difference, as noted before, was nonzero,
that is (0,∆).

Thus, the difference (∆,∆,∆,∆) cannot cause the difference (∆,∆,0,∆) after 3-
round FOX64.

This ID distinguisher is denoted (∆,∆,∆,∆)
3rounds
9 (∆,∆,0,∆).

6.2. ID Attacks on reduced-round FOX-64
First, we describe an attack on 4-round FOX64, that recovers RK0, the first round subkey,
on top of the 3-round distinguisher of Sect. 6.1.. Choose a pool of 235.5 plaintexts, denoted
P = (P1,P2,P3,P4), with |Pi | = 16 bits, which means 235.5(235.5− 1)/2 ≈ 270 text pairs.
Collect about 270/(216)3 = 222 pairs whose ciphertextsC = (C1,C2,C3,C4) satisfy∆C1 =

∆C2 = ∆C4 , 0 and∆C3 = 0. For each such pair try all 264 possible subkeys of the first
RK0 of the first f32 function, such that the round output difference is (∆1,∆2,∆3,∆4), by
partially encrypting one round. Collect about 264/(216)3 = 216 subkey values satisfying
∆1 = ∆2 = ∆3 = ∆4. These subkeys are wrong because they lead to a pair that satisfies
the ID distinguisher of Sect. 6.1.. Repeat the same analyses for each of the 222 pairs.
Each pair defines about 216 wrong values. It is expected that after 222 pairs, the number of
wrong subkeys remaining is 264(1− 2−16)222

= 264(1− 2−16)216.26
≈ 264 ∗ e−64 < 1, and the

single correct RK0 can be uniquely identified. The attack costs 235.5 CP; 264 ∗ 222/4 = 284

4-round computations and about 264/64= 258 blocks of memory.

Next, we describe an attack on 5-round FOX64, recovering RK0 and RK4, both at
the top and at the bottom of the distinguisher described in Sect. 6.1..

Choose a pool of 236 plaintexts, denotedP = (P1,P2,P3,P4), with |Pi |= 16 bits.
This pool provides about 271 text pairs. For each such pair:

(i) try all of the 264 possible subkeys RK0 of the first round, and partially encrypt
each plaintext pair across one round. Keep those pairs leading to a difference
(∆1,∆2,∆3,∆4) , (0,0,0,0) after one round. Collect about 264/(216)3 = 216 64-bit
subkey values that lead to∆1 = ∆2 = ∆3 = ∆4.

(ii) for each pair in (ii), try all 264 subkey values RK4 of the 5th round, and partially
decrypt the last round for each text block of the pair. Keep the pairs that have
difference (∆∗,∆∗∗,0,∆∗∗∗). The number of pairs is a fraction of 2−16 due to the
16-bit zero difference: 271/216 = 255. Collect about 264/(216)2 = 232 64-bit subkey
candidates for RK4 that lead to∆∗ = ∆∗∗ = ∆∗∗∗.

Make a list of the 248 128-bit subkey values combining (i) and (ii). These subkeys are
wrong because they lead to a pair that satisfies the ID distinguisher. Each such pair defines

194 Anais

a list of about 248 wrong128-bit subkey. The number of remaining wrong subkeys after
255 pairs is 2128(1− 2−48)255

= 2128(1− 2−48)248∗27
≈ 2128∗ e−128 < 1. Thus, only the correct

subkey value is expected to survive.

The attack costs 236 CP; 255∗264∗2/5≈ 2118 5-round computations and 2128/64=
2122 blocks of memory.

6.3. ID Distinguishers of FOX128

There are several ID distinguishers for FOX128, following a similar pattern to those found
for FOX64 in Sect. 6.1.. Consider 3-round FOX128, and a plaintext difference (∆,∆, ∆,
∆, ∆, ∆, ∆, ∆), where|∆| = 16 bits, and∆ , 0. Tracing the propagation of this difference,
the input difference to the first f64 function is (0,0,0,0), and thus, its output difference is
also (0,0,0,0). Consequently, the first round output difference is (∆, 0,∆, ∆, ∆, 0,∆, ∆),
due to the twoor mappings. This value is also the input difference to the second round,
while the input difference to the second f64 is (0,0,0,0).

Now, consider the ciphertext difference (∆′, ∆′, 0, ∆′, ∆′, ∆′, 0, ∆′) after three
rounds, where∆′ , 0. Tracing the difference propagation upwards: before theor map-
pings, the difference becomes (0,∆′, 0,∆′, 0,∆′, 0,∆′) and thus, the input difference to
the third f64 function is (0,0,0,0), and the input difference to the third round is also (0,
∆′, 0,∆′, 0,∆′, 0,∆′).

Before the second layer ofor mappings, at the end of the second round, the differ-
ence becomes (∆′, 0, 0,∆′,∆′, 0, 0,∆′). Combining the input and output differences of the
second round, we conclude that the left 32-bit output difference of f64 is (∆,0) ⊕ (∆′,0)
and also (0,∆) ⊕ (0,∆′), that is, (∆⊕ ∆′,0) = (0,∆ ⊕ ∆′), that is,∆ = ∆′. On the other
hand, the right 32-bit output difference from f64 is (∆,0)⊕ (∆′,0) and also (∆,∆)⊕ (0,∆′),
that is, (∆⊕ ∆′,0) = (∆,∆ ⊕ ∆′) i.e. ∆′ = 0, But, this last equality contradicts the fact that
∆′ , 0, by construction.

Thus, the difference (∆,∆, ∆, ∆, ∆, ∆, ∆, ∆) cannot cause the difference (∆′, ∆′,
0, ∆′, ∆′, ∆′, 0, ∆′) after 3-round FOX128. This distinguisher is denoted (∆,∆, ∆, ∆,

∆, ∆, ∆, ∆)
3rounds
9 (∆′, ∆′, 0, ∆′, ∆′, ∆′, 0, ∆′). Note that the contradiction works in the

decryption direction, too.

6.4. ID Attacks on reduced-round FOX-128

First, we describe an attack on 4-round FOX128, recovering RK0, similar to the attack on
FOX64, but using the distinguisher in Sect. 6.3..

Choose a pool of 268 plaintexts,P = (P1,P2,P3,P4,P5,P6,P7,P8), |Pi | = 16
bits, which gives about 2135 text pairs. Collect about 2135/(216)7 = 2135−112 = 223 pairs
whose ciphertext (denotedC = (C1,C2,C3,C4,C5,C6,C7,C8)) pairs satisfy∆C1 = ∆C2 =

∆C4 = ∆C5 = ∆C6 = ∆C8 , 0, and∆C3 = ∆C7 = 0. For each such pair, try all
2128 subkey value for RK0 in the first f64 function, such that the first round output dif-
ference is (∆1,∆2,∆3,∆4,∆5,∆6,∆7,∆8) by partially encrypting one round. Collect about
2128/(216)7 = 216 subkey values satisfying∆1 = ∆2 = ∆3 = ∆4 = ∆5 = ∆6 = ∆7 = ∆8.
These subkeys are wrong because they lead to a pair that satifies the ID distinguisher of
Sect. 6.3..

VIII Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais 195

Each text pair defines about 216 wrongsubkeys. It is expected that after 223 pairs,
the number of wrong subkeys remaining is 2128(1− 2−16)223

= 2128(1− 2−16)216∗27
≈ 2128 ∗

e−128 < 1, and the correct RK0 can be uniquely identified.

The attack costs 268 CP; 2128 ∗ 223/4 = 2149 4-round computations and about
2128/128= 2121 blocks of memory.

Next, an attack on 5-round FOX128, recovering both RK0 and RK4, using the
distinguisher of Sect. 6.3.. It is similar to the attack on 5-round FOX64.

Choose a pool of 252 plaintexts, denotedP = (P1,P2,P3,P4,P5,P6,P7,P8), with
|Pi |= 16 bits. This pool provides about 2103 text pairs. For each such pair:

(i) try all of the 2128 possible subkeys RK0 of the first round, and partially encrypt
each plaintext pair across one round. Keep those pairs leading to a difference (∆1,
∆2, ∆3, ∆4, ∆5, ∆6, ∆7, ∆8) , (0,0,0,0,0,0,0,0) after one round. Collect about
2128/(216)7 = 216 128-bit subkey values that lead to∆1 = ∆2 = ∆3 = ∆4 = ∆5 = ∆6

= ∆7 = ∆8.
(ii) for each pair in (ii), try all 2128 subkey values RK4 of the 5th round, and partially

decrypt the last round for each text block of the pair. Keep the pairs that have
difference (∆1, ∆2, 0, ∆3, ∆4, ∆5, 0, ∆6). The number of pairs is a fraction of
2−32 due to the two 16-bit zero difference words: 2103/232 = 271. Collect about
2128/(216)5 = 248 128-bit subkey candidates for RK4 that lead to∆1 = ∆2 = ∆3 =

∆4 = ∆5 = ∆6.
Make a list of the 264 128-bit subkey values combining (i) and (ii). These subkeys are
wrong because they lead to a pair that satisfies the ID distinguisher. Each such pair defines
a list of about 264 wrong 128-bit subkeys. The number of remaining wrong subkeys after
271 pairs is 2128(1− 2−64)271

= 2128(1− 2−64)264∗27
≈ 2128 ∗ e−128 < 1. Thus, only the single

correct subkey value is expected to survive.

The attack costs 252 CP; 2 ∗ 2128 ∗ 271/5 ≈ 2198 5-round computations and
2256/128= 2249 blocks of memory.

7. Conclusions
This paper presented ID attacks on 4-round and 5-round FOX ciphers, and some find-
ings on information leakage on 2-round variants. We could derive the full subkeys of
FOX64/k/2 and FOX128/k/2 using only two known plaintexts. The attacks described
have the same effectiveness for either the encryption or the decryption schemes and is
independent of the key schedule algorithms. Table 2 compare the complexity of known
attacks reported on reduced-round FOX ciphers.

Furthermore, we could derive non-trivial internal cipher data fromr-round FOX
ciphers, forr > 2. This data leakage has already been observed in DES [NBS 1977,
Davies and Murphy 1995], but not in IDEA, whose design inspired the FOX ciphers.

The information leakage detected inr-round FOX ciphers,r > 2, currently does
not lead to attacks such as [Davies and Murphy 1995, Rijmen et al. 1997] since the round
functions, f32 and f64, are both bijective mappings. It is an open question how to exploit
this information leakage to further recover key bits, or other unknown text data.

A subject for further studies is the existence of dual FOX ciphers, as observed in
the AES [Barkan and Biham 2002], since all internal operations in FOX are over GF(28).

196 Anais

Table 2. Attack complexities on reduced-round FOX ciphers.
Cipher #Rounds Time Data Memory Source

FOX64/k/r 2 232 2 KP — Sect. 2.
4 241 240 CP 234 [WEWoRC 2005, p.98]
4 245.4 29 CP 29 [Wenling et al. 2005]
4 264 9 · 28 CP 28 [Junod and Vaudenay 2004]
4 284 235.5 CP 258 Sect. 2.
5 2105 240 CP 246 [WEWoRC 2005, p.98]
5 2109.4 29 CP 29 [Wenling et al. 2005]
5 2118 236 CP 2122 Sect. 6.2.
5 2128 17 · 28 CP 28 [Junod and Vaudenay 2004]
6 2173.4 29 CP 29 [Wenling et al. 2005]
6 2192 25 · 28 CP 28 [Junod and Vaudenay 2004]

FOX128/k/r 2 264 2 KP — Sect. 4.
4 277.6 29 CP 29 [Wenling et al. 2005]
4 2128 240 CP — [Junod and Vaudenay 2004]
4 2149 268 CP 2121 Sect. 6.4.
5 2198 252 CP 2249 Sect. 6.4.
5 2201 243 CP 279 [WEWoRC 2005, p.98]
5 2205.6 29 CP 29 [Wenling et al. 2005]

References

Barkan,E. and Biham, E. (2002). In how many ways can you write Rijndael. In Zheng,
Y., editor,Adv. in Cryptology, Asiacrypt 2002, LNCS 2501, pages 160–175. Springer-
Verlag.

Biham, E., Biryukov, A., and Shamir, A. (1999). Miss-in-the-Middle Attacks on IDEA,
Khufu and Khafre. In Knudsen, L., editor,6th Fast Software Encryption Workshop,
LNCS 1636, pages 124–138. Springer-Verlag.

Davies, D. and Murphy, S. (1995). Pairs and Triplets of DES S-Boxes.Journal of Cryp-
tology, 8(1):1–25.

Junod, P. and Vaudenay, S. (2004). FOX: a new family of block ciphers. In11th Se-
lected Areas in Cryptography (SAC) Workshop, LNCS 3357, pages 114–129. Springer-
Verlag.

Lai, X. (1995).On the Design and Security of Block Ciphers, volume 1 ofETH Series in
Information Processing. Hartung-Gorre Verlag, Konstanz. J.L. Massey.

Lai, X., Massey, J., and Murphy, S. (1991). Markov Ciphers and Differential Cryptanal-
ysis. In Davies, D., editor,Advances in Cryptology, Eurocrypt’91, LNCS 547, pages
17–38. Springer-Verlag.

NBS (1977). Data Encryption Standard (DES). FIPS PUB 46, Federal Information Pro-
cessing Standards Publication 46, U.S. Department of Commerce.

Rijmen, V., Preneel, B., and Win, E. D. (1997). On weaknesses of non-surjective round
functions.Design, Codes and Cryptography, 12(3):253–266.

VIII Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais 197

Wenling, W., Wentao, Z., and Dengguo, F. (2005). Improved integral cryptanalysis of
FOX block cipher.

WEWoRC (2005). Western European Workshop on Research in Cryptology.

198 Anais

