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Abstract. Thispapet presents new cryptanalytic results on reduced-round ver-
sions of the FOX block cipher, also known as IDEA-NXT. We can recover all
subkeys of 2-round variants of FOX, and derive internal cipher data from r-
round FOX, for any r> 2. This information leakage phenomenon is based only
on the high-level Lai-Massey scheme, and was already observed in Feistel ci-
phers such as DES, but is absent even in IDEA, whose design inspired the FOX
ciphers. Moreover, this paper presents the first impossible-differential analysis
of reduced-round FOX, and new results on 4-round and 5-round FOX.

1. Introduction

FOX, also known as IDEA-NXT, is a family of block ciphers designed by P. Junod and
S. Vaudenay [Junod and Vaudenay 2004]. There are two main variants of FOX, whose
parameters are specified in Table 1, where<l? < 255, and 0< k < 256, withk a
multiple of 8.

The high-level structure of the FOX ciphers uses the Lai-Massey scheme, orig-
inally designed for the IDEA block cipher [Lai et al. 1991, Lai 1995]. All attacks and
internal cipher data recovered from FOX in this paper were obtained due to the high-level
structure of a round, which is based on the round structure of IDEA.

FOX ciphers are byte oriented, and all byte operations are performed if)GF(2
GF(2)[X]/(p(X)), wherep(x) = x® + X" + x® + x>+ x* + x3 + 1 is an irreducible polynomial
over GF(2). FOX64 and FOX64/k/r encryption operations iteratel (full) rounds,
denotedmor 64, followed by a final round denotddhid64. Formally,Imor 64, Imid64:
z5 x z5* — Z§*, with inputs a 64-bit data block and 64-bit subkey, and as output a
64-bit data block (Fig.2). The encryption of a 64-bit data bléckinder a ke, results
in the ciphertext bloclkC = Imid64( Imor64( ... Imor64 (P, RKy), ..., RK_2), RK_1),
where the 64-bit subkeyRK;, 0 < i < r — 1, are derived fronK according to a key
schedule algorithm. The decryption transformation uses a round function brailegi:
z5 x 75" — Z5*, and recovers the plaintext blogk from a given ciphertext block,
and keyK, asP = Imid64( Imio64( ... Imiob4 (C,RK 1), ..., RKy), RKy).

IResearcliunded by FAPESP under contract 2005/02102-9.

Table 1. Parameters of the FOX ciphers.

Cipher Block Size (bits) | Key Size (bits) #Rounds
FOX64 64 128 16
FOX128 128 256 16
FOX64/k/r 64 kK(O0<k<256)|r(12<r <255)
FOX128/k/r 128 k(0<k<256)|r(12<r < 255)
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FOX128 and FOX128/k/r encrypticsthemes iterate— 1 (full) rounds, denoted
elmor 128, followed by a final round denoteelmid128. Similarly, a modified round
functionelmiol28 is used for decryption. Formallgimor 128, eimid128, andelmiol28:
7% x 73?® — 71%. The encryption of a 128-bit blocR under a 128-bit ke results
in a 128-bit ciphertext bloclC as follows: C = elmid128(elmor128( ... elmor 128(
P,RKy), ..., RK_.»), RK_1), whereRK;, 0 < i < r — 1 are 128-bit subkeys derived from
K using a key schedule algorithm. Analogously, the decryption of a data Blpgken
a keyK, results in the plaintext blocR given byP = elmid128(elmiol28( ... eimiol28
(C,RK:_1), ..., RKy), RKy).

The elmor 64 round function is built as a Lai-Massey scheme combined with an
orthomorphism mappingr:Z3? — z3?, defined a®r(a,b) = (b,a®b), wherea,b € Z3°,
ands is bitwise exclusive-or. Formally, = Y| ||Yg = Imor64(X_||Xg) = or (X & f32(X_ @

Xr, RK))II(Xg @ 32(X. & Xg, RK;)), where|| denotes concatenation of bit strings. The
Imid64 function is the same dsnor 64 but withoutor. The inverse obr is denotedo:
Z¥ — 73 and defined amo(a,b) = (a® b,a). The mapping 32232 x z5* — Z3%is
bijective, taking a 32-bit dat and a 64-bit round subkeRRK; = RKy||[RKy; as inputs and
returning a 32-bit outputy = f32(X, RK;) = sigmad(mudgigmadi & RKy)) & RKy;) &
RKoi. The transformatiorsigma4 consists of parallel application of a fixes 8-bit S-
box, denoteds, bytewise. Its inverse is denoted sim@y!. The linear transformation
mu4 consists of a multiplication of the intermediate data withad4dmatrix over GF(2).
Given a 32-bit inpuA = (Ao, A1, Az, Az) to mu4, its output i = (By, By, B, Bs):

By 1 1 1 X Ao
B:1 _ 1 x1+1 X 1 Aq
B, | | xt+1 x 1 1] A
Bs X 1 x1+1 1 Az

Previously known analysis of reduced-round FOX ciphers were reported by Junod
in [Junod and Vaudenay 2004], and in [WEWORC 2005].

Some noteworthy properties of the orthomorph@ngand its inverseo) are:

or has order 3, namelgr (or (or (a,b)))= or3(a,b) = (a, b); the same applies {o;
(a,b)® or(a,b)® or?(a,b) = (0,0), for any (ab) € Z3° x Z°;

or(a,b) = (a,b) & (a,b) = (0,0);

or?(a,b) = (a,b) & (a,b) = (0,0);

or(a,b) =io(a,b) & (a,b) = (0,0).

The orthomorphism is essential in the round structure of FOX. Consider
FOX64/k/r, butwithout the orthomorphism mapping. Let the plaintext be denoted
P = (P.,Pr), and the ciphertextC = (C.,Cg), and consider the exclusive-or of the
two 32-bit words in a block, at the input and output aftepunds. Since the output of
every f32 instance is exclusive-ored to both words in a block at the end of every round, it
follows thatP_ @ Pgr = C, ®Cx, that is, the f32 values are canceled in pairs. This invariant
allows to distinguish this weak FOX64/k/r variant from a random permutation, for any
r > 0 by simply comparing the xor of input words with the xor of output words (a 32-bit
distinguisher that would hold with probability # in a random permutation). Similarly,
in FOX128/k/rwithout the orthomorphism, the exclusive-or of all four 32-bit words of
plaintext and ciphertext blocks are also equal, for amy0.
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Figure 1. (a) 3-round FOX64/k/r, and (b) 3-round FOX128/k/r.

This paper is organized as follows: Sect. 2. presents an attack on 2-round
FOX64/k/r requiring only two known plaintext-ciphertext pairs. Sect. 3. describes non-
trivial information leaked fronr-round FOX64/k/r, for > 2. Sect. 4. presents an attack
on 2-round FOX128/k/r. Sect. 5. describes non-trivial information leaked froound
FOX128/k/r, forr > 2. Sect. 6. describes impossible differential attacks on reduced-round
FOX. Sect. 7. concludes the paper.

2. Key-recovery Attack on 2-Round FOX64/k/r

A consequence of the Lai-Massey scheme, in both FOX64/k/r and FOX128/k/r, is that the
input of the first and of the last rourfd function, x € {32,64}, is always known from

the plaintext and the ciphertext blocks. For example, in Fig. Aa&,B = io(C) & D,
andEa® F = io(G) @ H. This is also a consequence of the absence of key-dependent
pre-whitening and post-whitening, such as in the DES [NBS 1977].

Consider FOX64/k/r with two full rounds, namely, = elmor64( elmor64 (X,
RKp), RK;). There is a straightforward attack that requires only two known plaintext-
ciphertext (KP) pairs. Let the first KP pair b¥;(Y;), with X; = (A||B), andY; = (E||F);
and the output of the first round b&|[D), with A, B, C, D, E, F € Z3° (the first 2 rounds
in Fig. 1(a)). Thus, from the round structure (or Lai-Massey scheme) of FOX64/k/r, it
follows that
AeB=io(C)e D (1)

and
CoD=io(E)oF. (2

From (1) and (2), we obtain:

ioE)eF=or(AeBeD)eoD > Daeor(D)=or(AeB)dio(E)® F, 3)
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and
io(E)eF=CoAaBoio(C) > Coio(C)=AoBoio(E)oF. (4)

If D = (dy]|dy), thenor(D) @ D = (d; @ dy)||(dy). It follows thator(D) @ D uniquely
determined. Similarly, forio(C) & C. Thus, information on the plaintex(B), and the
ciphertext E||F) allows one to derive information from the middle of 2-round FOX64/k/r.

GivenC andD, itis possible to attack both f32 functions, since both their input and
output are known. For example, the input to the f32 in the first rouA& B, and its output
if io(C) ® Aor Be D. These values represent a 32-bit distinguisher:A32B) = B D.
Given these values, and the description of f32 in Sect. 1., one can guess the full 32-bit
RKoo, and obtain a unique value for the full 32-itK;,. This value can be verified
using a second plaintext paiA’(|B’). There is a 2°2 chance of a false alarm. Using
another plaintext-ciphertext pair the number of remaining false key&is @ - (2-3%) <
1. Analogously for the f32 in the second round, its inpuCi® D, and its output is
io(E)@® F. The total attack effort is-2%2 f32 evaluations, or about22-round FOX64/k/r
computations, and 2 KP pairs, to recover both round subkeys (128 bits). This attack
works independently of the key schedule algorithm (moreover, it does not apply to 2-
round IDEA [Lai 1995]). Thus, it holds for both FOX64 and FOX64/k/r.

3. Information L eakage from r-round FOX64/k/r, r > 2

In this section, we derive internal cipher data from FOX64/k/r, fos 2 using only
known plaintext. As an example, considet 3. Let,Y = elmor64( e mor 64( elmor 64(

X, RKp), RK;), RKy). Applying a similar reasoning as in Sect.2., let the plaintext be
denotedX = (A||B), the output of the first round b€||D), the output of the second round
be (E||F) and the ciphertext b¥ = (G||H) (Fig. 1(a)). Then, the same relations (1) and
(2) can be derived, plus the following

io(G)eH=EoF. 5)

Combining (1), (2), and (5), results in the following relations depending only on
plaintext (A||B) and ciphertext@||H). For example, from (5), it follows that

io(G)eH=EeF=CeDoio(E)ydE=0or(AeBeD)eDoio(E)® E —
Door(D)eoE@io(E) =or(A®B)®io(G)eH —
Eoor(D)@or(E@or(D)) =or’(AeB)eGaor(H). (6)

Thus, E @ or (D) can be uniquely determined. Similarly, the following relations can be
obtained

CeoEoiolCoE)=AaBaio(G)oH, (7
Foor(D)@or(F @or(D)) =or’(Ae@B)@ioG) e H, (8)

and
FeCoor(FaC)=o(AeB)sio(G)aoH, (9)

which provideF @ or (D) andF @ C. All of these relations leak internal information from
3-round FOX64/k/r, given only known plaintext. This phenomenon is absent in IDEA
[Lai et al. 1991].
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The same reasoning can be applied4@und FOX64/k/r,r > 3. The informa-
tion leaked refers to 32-bit exclusive-or combination of intermediate cipher data across
rounds of FOX64/k/r, using only known plaintext.

Another approach at deriving non-trivial internal cipher data from FOX64/k/r is
the following: consider = 3, a plaintext blockX = (A||B), and the corresponding cipher-
text blockY = (G|IH), with A = (aulla;), B = (bullbz), G = (aullg2), andH = (hullhy), &,

b, ¢, d € Zg, 1 <i < 2. Moreover, let the 32-bit outputs of f32 functions in the 1st,
2nd and 3rd rounds be denoted|(X,), (y1lly2) and (z||z), respectively. Using the round
structure of FOX64/k/r, it follows fronB andG that

BoH=(Xoyozn)l(xoy.®2). (10)
Similarly, from A andG: G = or((z]|z) ® or ((yally2) ® or ((x1]|X2) ® A))). It results in
AeG=(x0Y10Y,02)|(xey1®202). (11)

Equations (10) and (11) provide internal data of 3-round FOX64/k/r, distict from (6), (7),
(8), (9). We can further isolate some values in (10) and (11).B®iG = a = (a1]|az),
andAe G =8=(B,|82). Then,a1 ®B1®Br =% Dz, a1 ®ar, ® L1 D L2 = Y1 @ %, and
@X2®P1OL2= X1 DY2.

Relations (10) and (11) are similar to the exclusive-or combination of round output
values observed in the DES cipher in [Davies and Murphy 1995]. If3déunction was
non-bijective for a fixed key, then the knowledge of the exclusive-or of several outputs of
f32 functions across several rounds could allow to detect some non-uniform distribution,
as in [Rijmen et al. 1997]. But, th82 mapping is surjective.

4. An Attack on 2-Round FOX128/k/r

A similar attack to 2-round FOX64/k/r in Sect.2. can be applied to 2-round FOX128/k/r.
Consider FOX128/k/2, namely, = elmor128( elmor 128 (X, RKy), RK;). Let (X4||Y1)

be a KP pair, withX; = (A||B||C||D), andY; = (1]|J||IK||IL), and E]||F||G||H) be the output

of the first round, withA, B, C, D, E, F, G, H, I, J, K, L € Z*° (the first 2 rounds in
Fig. 1(b)). From the round structure (or Lai-Massey scheme) of FOX128/k/r, it follows
that

A®B=ioE)eF, (12)
CoD=ioG)@H, (13)
EoF =io(l)®J, (14)
GoH=ioK)aL. (15)

From (12) and (14), we obtain:
io)eJ=EoF=0o(AeoBoF)eF - Faeor(F)=or(AeB)sio(l)®J, (16)
so,F can be uniquely determined frofe or (F). Analogously, we obtain
ioleJ=EeoF=E®A®Ba®io(E) > E®io(E)=AeBsio(l) & J, a7

andE can be uniquely determined frome io(E).
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Figure 2. Computational graph of full 16-round FOX64.
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Similarly, from (13) and (15), we obtain
io(K)eL=GeH=0o(CeoDe®H)oH - H@or(H)=or(CeD)®io(K)®L, (18)
so,H can be uniquely determined frobha or (H). Analogously, we obtain
ioK)eL=GoH=GaeCaeDoio(G) > Gaio(G)=CeDeioK)eL, (19)
andG can be uniquely determined fro@® i0(G).

Now, with the recovered values &, F, G, andH, we can attack both f64 func-
tions, since we know both their inputs and outputs. For example, the f64 in the first round
has input A @ B)||(C @ D), and output B® F)||(D @ H). It is a 64-bit distinguisher (it
holds with probability 254 for a random permutation). From the internal structure of f64,
on can guess the 64-RKy, and recover a unique 64-bit value BiKy;. This value
can be checked with another KP pair. The number of false alarms after this filtering is
(2122 - 1) - (27542 < 1. The same applies to 64 in the second round, whose input is
(E® F)|I(Ge® H) and output E & J)||(H @ L). The same two KP pairs can be reused to
recoverRK;y andRKy;. The total attack effort is 2254 f64 computations, or abouf?
2-round FOX128/k/r computations, and 2 KP, to recover two 128-bit subkeys. This attack
Is independent of the key schedule algorithm.

5. Information Leakage from r-round FOX128/k/r, r > 2

Similar to Sect.3., one can derive nontrivial information frormound FOX128/k/r for
r > 2. As an example, we detail the case 3. Consider the following relations from
Fig. 1(b):
leJ=io(M)®N, (20)
KelL=io(O)eP. (22)

Equations (12) up to (21) lead to the following relatia@] = io(M)®N = or (EeFoJ)®
J = or(or (A@BaF)eF®J)eJ — or?(F)eor (F)@Jaor (J) = or?(AeB)dio(M)®N. Thus,
J & or(F) can be uniquely determined from|(B) and (M||N). Similarly, the following
relations can be obtained:® J = io(M)e N =or(E@eFeJ)eoJ =0 (E®oA® B
ioE)eJ)eJ s or(EaJ)oEaJ =or(A® B)@io(M) @ N, uniquely determining
Ee J;also,l @ J=io(M)eN=I1oE@Faio(l)=leor(AeBaF)aFa&io(l) —
Feor(F)el®io(l) = or(AeB)@io(M)® N, uniquely determining @ or (F); and finally,
leJ=io(M)eN =1doEaF®io(l) =loEe@AeBaio(E®l) - |eEabfio(l E) =
A® Baio(M) @ N, uniquely determinind & E.

Further internal data leaking from FOX128/k/r come fr@n® P andB& N. Let
(X1l1%2), (Y1lly2), (z1]|z2) be the 64-bit outputs from the 64 functions in the 1st, 2nd and 3rd
rounds, respectively. TheD,® P = X, @y, ® 2, andN = or(z & or(y, @ or (X, ® B))) —
or(z) @ or?(y1) ® x1 = B@N. Similar values can be obtained feround FOX128/k/r, for
anyr > 2.

6. Impossible-Differentials of reduced-round FOX

The impossible-differential (ID) technique applied to FOX follows a similar approach as
used against IDEA in [Biham et al. 1999]. This analysis considers truncated differentials.
Thus, letA denote an arbitrary nonzero 32-bit xor difference, and 0 a null 32-bit xor
difference. The exact value afdoes not matter, but only the fact that it is the exclusive-
or of two distinct values.
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6.1. 1D Distinguishers of FOX64

We have found several 3-round ID distinguishers for FOX64, using truncated differen-
tials. For instance, consider a plaintext difference of\(A\, A), and an output difference

of (A, A, 0,A) after three full rounds. At the first round, the input difference to f32 i8)(0,
Consequently, the round output difference isQA, A). The input difference of the sec-
ond f32 is (OA). The third round output difference, (A,0,A), leads to a difference of
(0,A,0,A) beforeor, and an input difference of (0) to the third f32 mapping. Thus, the
output difference of the second round isA0),A). Consequently, the output difference

of the second f32 has to be @), (A, 0) = (0,0) (due to the left 32-bit output half) and
also (0A) @ (A, A) = (A,0) (due to the right 32-bit output half). This is a contradiction
because f32 is a bijective mapping, and the input difference, as noted before, was nonzero,
thatis (0,A).

Thus, the difference (A, A, A) cannot cause the difference (A0, A) after 3-
round FOX64.
3rounds

This ID distinguisher is denoted (A, A,A) - (A, A,0,A).

6.2. ID Attackson reduced-round FOX-64

First, we describe an attack on 4-round FOX64, that recovegs RK first round subkey,
on top of the 3-round distinguisher of Sect. 6.1.. Choose a podPfiaintexts, denoted
P = (P4, Py, P3, Ps), with |Pj| = 16 bits, which means325(23%° — 1)/2 = 27 text pairs.
Collect about 2/(2%)2 = 222 pairs whose ciphertex = (C, C,, C3, C,) satisfyAC, =
AC, = AC,4 # 0 andAC; = 0. For each such pair try alP2possible subkeys of the first
RKj of the first f32 function, such that the round output difference {SAA As, As), by
partially encrypting one round. Collect abol®tZ2)® = 26 subkey values satisfying
A1 = A, = Az = A4. These subkeys are wrong because they lead to a pair that satisfies
the ID distinguisher of Sect. 6.1.. Repeat the same analyses for each of thair.
Each pair defines about®wrong values. It is expected that aftéf pairs, the number of
wrong subkeys remaining i$41 — 2-16)2* = 2641 — 2-16)2°2° 5, 264, 64 < 1 and the
single correct RI can be uniquely identified. The attack costs®XCP; 54« 222/4 = 284
4-round computations and abo$t &4 = 2% blocks of memory.

Next, we describe an attack on 5-round FOX64, recovering &€ RK;, both at
the top and at the bottom of the distinguisher described in Sect. 6.1..

Choose a pool of 2 plaintexts, denote® = (P, P, Ps, P,), with |P;|= 16 bits.
This pool provides about2text pairs. For each such pair:

(i) try all of the 2* possible subkeys RKof the first round, and partially encrypt
each plaintext pair across one round. Keep those pairs leading to a difference
(A1, Az, As, Ag) # (0,0,0,0) after one round. Collect about*2(216)2 = 216 64-bit
subkey values that lead 19 = A, = Az = Ay.

(i) for each pair in (i), try all 2* subkey values RKof the 5th round, and partially
decrypt the last round for each text block of the pair. Keep the pairs that have
difference (A, A**,0,A**). The number of pairs is a fraction of® due to the
16-bit zero difference:"2/216 = 25, Collect about %/(2%)? = 232 64-bit subkey
candidates for RKthat lead toA* = A*™ = A™*,

Make a list of the 28 128-bit subkey values combining (i) and (ii). These subkeys are
wrong because they lead to a pair that satisfies the ID distinguisher. Each such pair defines
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a list of about 28 wrong 128-bit subkey. The number of remaining wrong subkeys after
255 pairs is 228(1 — 2748)2™ = 21281 _ p-48)2"2" 4 2128, o128 1 Thuys, only the correct
subkey value is expected to survive.

The attack costs® CP; 25«25 2/5 ~ 2118 5-round computations and%®/64 =
2122 plocks of memory.

6.3. ID Distinguishersof FOX128

There are several ID distinguishers for FOX128, following a similar pattern to those found
for FOX64 in Sect. 6.1.. Consider 3-round FOX128, and a plaintext differenae (4,

A, A, A, A, A), where|A| = 16 bits, andA # 0. Tracing the propagation of this difference,
the input difference to the first 64 function is (00,0), and thus, its output difference is
also (00,0,0). Consequently, the first round output difference is (4,Q, A, 0, A, A),

due to the twoor mappings. This value is also the input difference to the second round,
while the input difference to the second 64 isQ@, 0).

Now, consider the ciphertext difference’ ,(A’, 0, A’, A’, A, 0, A’) after three
rounds, where\’ # 0. Tracing the difference propagation upwards: beforeothmap-
pings, the difference becomes (0, 0, A’, 0, A’, 0, A’) and thus, the input difference to
the third f64 function is (00, 0,0), and the input difference to the third round is also (O,
A, 0,A,0,AN,0,A).

Before the second layer of mappings, at the end of the second round, the differ-
ence becomes (A0, 0,A’, A’, 0, 0,A"). Combining the input and output differences of the
second round, we conclude that the left 32-bit output difference of {64 &) @\(A’, 0)
and also (0A) @ (0,A), that is, (A® A’,0) = (0,A & A’), that is,A = A’. On the other
hand, the right 32-bit output difference from 64 is QM (A’, 0) and also (AA) & (0,A’),
thatis, (A@ A’,0) = (A,A@ A’) i.e. A’ = 0, But, this last equality contradicts the fact that
A’ # 0, by construction.

Thus, the difference (M, A, A, A, A, A, A) cannot cause the difference (A A’,
0, N, N, N, 0, A’) after 3-round FOX128. This distinguisher is denoted AAA, A,

3rounds

A AN AN - (AN, 0, A, A, A, 0, A). Note that the contradiction works in the
decryption direction, too.

6.4. | D Attackson reduced-round FOX-128

First, we describe an attack on 4-round FOX128, recovering Biknilar to the attack on
FOX64, but using the distinguisher in Sect. 6.3..

Choose a pool of @ plaintexts,P = (Py, Py, Ps, Ps, Ps, Ps, P7, Pg), |Pi| = 16
bits, which gives about’®® text pairs. Collect about'®/(216)" = 2135-112 = 223 pajrs
whose ciphertext (denot&ll= (C,, C,, Cs, C4, Cs, Cg, C7, Cg)) pairs satishAC, = AC, =
AC4 = ACs = ACs = ACg # 0, andAC3 = AC; = 0. For each such pair, try all
2128 subkey value for RKin the first f64 function, such that the first round output dif-
ference is (A, Az, Az, A4, As, As, A7, Ag) by partially encrypting one round. Collect about
2128/(219)7 = 21¢ subkey values satisfying; = Ay = Az = Ay = As = Ag = A7 = As.
These subkeys are wrong because they lead to a pair that satifies the ID distinguisher of
Sect. 6.3..
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Each text pair defines about®2vrongsubkeys. It is expected that afte pairs,
the number of wrong subkeys remaining 1881 — 2-16)2* = 21281 _ p-16)2'%2" , 7128,
e 128 < 1, and the correct Rican be uniquely identified.

The attack costs® CP; 228 x 223/4 = 2'%9 4-round computations and about
2128/128 = 212! plocks of memory.

Next, an attack on 5-round FOX128, recovering bothyRIKd RK;, using the
distinguisher of Sect. 6.3.. It is similar to the attack on 5-round FOX64.

Choose a pool of Z plaintexts, denote® = (P4, P,, Ps, Ps, Ps, Ps, P7, Pg), with
|P;|= 16 bits. This pool provides about? text pairs. For each such pair:

(i) try all of the 228 possible subkeys RKof the first round, and partially encrypt
each plaintext pair across one round. Keep those pairs leading to a differgnce (A
Ay, Az, A4, As, A, A7, Ag) # (0,0,0,0,0,0,0,0) after one round. Collect about
2128/(216)7 = 216 128-bit subkey values that leadAg = A, = A3 = Ay = As = Ag
= A7 = Ag.

(i) for each pair in (i), try all 228 subkey values RKof the 5th round, and partially
decrypt the last round for each text block of the pair. Keep the pairs that have
difference (A, Ay, 0, Az, A4, As, 0, Ag). The number of pairs is a fraction of
2732 due to the two 16-bit zero difference wordg93223%2 = 271 Collect about
2128/(216)> = 248 128-hit subkey candidates for Rkhat lead toA; = Ay, = Az =
Ag = As = Ae.

Make a list of the 2* 128-bit subkey values combining (i) and (ii). These subkeys are
wrong because they lead to a pair that satisfies the ID distinguisher. Each such pair defines
a list of about 2* wrong 128-bit subkeys. The number of remaining wrong subkeys after
2" pairs is 228(1 — 2764)2"" = 2128(1 _ p-64)2""2 D128, 7128 - 1 Thus, only the single
correct subkey value is expected to survive.

The attack costs® CP; 2x 2128 &« 2711/5 ~ 219 5.round computations and
2256/128 = 2249 plocks of memory.

7. Conclusions

This paper presented ID attacks on 4-round and 5-round FOX ciphers, and some find-
ings on information leakage on 2-round variants. We could derive the full subkeys of
FOX64/k/2 and FOX128/k/2 using only two known plaintexts. The attacks described
have the same effectiveness for either the encryption or the decryption schemes and is
independent of the key schedule algorithms. Table 2 compare the complexity of known
attacks reported on reduced-round FOX ciphers.

Furthermore, we could derive non-trivial internal cipher data freraund FOX
ciphers, forr > 2. This data leakage has already been observed in DES [NBS 1977,
Davies and Murphy 1995], but not in IDEA, whose design inspired the FOX ciphers.

The information leakage detectedriitound FOX cipherst > 2, currently does
not lead to attacks such as [Davies and Murphy 1995, Rijmen et al. 1997] since the round
functions, 32 and 64, are both bijective mappings. It is an open question how to exploit
this information leakage to further recover key bits, or other unknown text data.

A subject for further studies is the existence of dual FOX ciphers, as observed in
the AES [Barkan and Biham 2002], since all internal operations in FOX are ovefGF(2
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Table 2. Attack complexities on reduced-round FOX ciphers.

Cipher #Rounds Time Data Memory Source
FOX64/k/r 2 2% 2 KP — Sect. 2.
4 2 ocp v [WEWORC 2005, p.98]
4 254 2°CP 2 [Wenling et al. 2005]
4 24 9.28CP 2 [Junod and Vaudenay 2004]
4 24 23°5CP 28 Sect. 2.
5 2105 240 Cp 246 [WEWORC 2005, p.98]
5 21094 29CPp 2 [Wenling et al. 2005]
5 2118 236 CP 222 Sect. 6.2.
5 2128 17.28CP Vi [Junod and Vaudenay 2004]
6 21734 9CP 2 [Wenling et al. 2005]
6 2192 25.28CP i [Junod and Vaudenay 2004]
FOX128/k/r 2 264 2 KP — Sect. 4.
4 2116 2°CP 2 [Wenling et al. 2005]
4 2128 40Cp — [Junod and Vaudenay 2004]
4 2149 208 CP 22t Sect. 6.4.
5 2198 22 CP 249 Sect. 6.4.
5 201 243Cp 79 [WEWORC 2005, p.98]
5 2056 29CP 2 [Wenling et al. 2005]
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